The Tale-Tell Heart: Evolutionary tetrapod shift from aquatic to terrestrial life-style reflected in heart changes in axolotl (Ambystoma mexicanum)

. 2022 Jun ; 251 (6) : 1004-1014. [epub] 20210826

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid34423892

BACKGROUND: During amphibian metamorphosis, the crucial moment lies in the rearrangement of the heart, reflecting the changes in circulatory demands. However, little is known about the exact shifts linked with this rearrangement. Here, we demonstrate such myocardial changes in axolotl (Ambystoma mexicanum) from the morphological and physiological point of view. RESULTS: Micro-CT and histological analysis showed changes in ventricular trabeculae organization, completion of the atrial septum and its connection to the atrioventricular valve. Based on Myosin Heavy Chain and Smooth Muscle Actin expression we distinguished metamorphosis-induced changes in myocardial differentiation at the ventricular trabeculae and atrioventricular canal. Using optical mapping, faster speed of conduction through the atrioventricular canal was demonstrated in metamorphic animals. No differences between the groups were observed in the heart rates, ventricular activation times, and activation patterns. CONCLUSIONS: Transition from aquatic to terrestrial life-style is reflected in the heart morphology and function. Rebuilding of the axolotl heart during metamorphosis was connected with reorganization of ventricular trabeculae, completion of the atrial septum and its connection to the atrioventricular valve, and acceleration of AV conduction.

Zobrazit více v PubMed

Bruner HL. On the heart of lungless salamanders. J Morphol. 1900;16(2):323-336.

Jacobson AG, Duncan JT. Heart induction in salamanders. J Exp Zool. 1968;167(1):79-103.

Burggren WW, Fritsche R. Amphibian cardiovascular development. In: Burggren WW, Keller BB, eds. Development of Cardiovascular Systems: Molecules to Organisms. New York: Cambridge University Press; 1997:166-182.

Crump ML. Amphibian diversity and life history. In: Dodd CK Jr, ed. Amphibian Ecology and Conservation: A Handbook of Techniques. Oxford: Oxford University Press; 2009:3-20.

Wiens JJ. Global patterns of diversification and species richness in amphibians. Am Nat. 2007;170(S2):S86-S106.

Stephenson A, Adams JW, Vaccarezza MJ. The vertebrate heart: an evolutionary perspective. J Anat. 2017;231(6):787-797.

de Bakker DM, Wilkinson M, Jensen B. Extreme variation in the atrial septation of caecilians (Amphibia: Gymnophiona). J Anat. 2015;226(1):1-12.

Jensen B, Moorman AF, Wang T. Structure and function of the hearts of lizards and snakes. Biol Rev Camb Philos Soc. 2014;89(2):302-336.

Burggren WW, Warburton S. Amphibians as animal models for laboratory research in physiology. ILAR J. 2007;48(3):260-269.

Brown DD, Cai L. Amphibian metamorphosis. Dev Biol. 2007;306(1):20-33.

Norris DO, Carr J. The hypothalamus-pituitary-thyroid (HPT) axis of nonmammalian vertebrates. Vertebrate Endocrinology. 6th ed. Cambridge: Academic Press; 2020:231-258.

Newman RA. Adaptive plasticity in amphibian metamorphosis. Bioscience. 1992;42(9):671-678.

Reiss JO. The phylogeny of amphibian metamorphosis. Zoology (Jena). 2002;105(2):85-96.

Tata JR. Amphibian metamorphosis as a model for the developmental actions of thyroid hormone. Mol Cell Endocrinol. 2006;246(1-2):10-20.

Burggren WW, West NH. Changing respiratory importance of gills, lungs and skin during metamorphosis in the bullfrog Rana catesbeiana. Respir Physiol. 1982;47(2):151-164.

Just JJ, Gatz RN, Crawford EC Jr. Changes in respiratory functions during metamorphosis of the bullfrog, Rana catesbeiana. Respir Physiol. 1973;17(3):276-282.

Atkinson BG, Just JJ. Biochemical and histological changes in the respiratory system of Rana catesbeiana larvae during normal and induced metamorphosis. Dev Biol. 1975;45(1):151-165.

Turner SC. A comparative account of the development of the heart of a newt and a frog. Acta Zool. 1967;48(1-2):43-57.

Page RB, Monaghan JR, Walker JA, Voss SR. A model of transcriptional and morphological changes during thyroid hormone-induced metamorphosis of the axolotl. Gen Comp Endocrinol. 2009;162(2):219-232.

Rosenkilde P, Ussing AJ. What mechanisms control neoteny and regulate induced metamorphosis in urodeles? Int J Dev Biol. 1996;40(4):665-673.

Crowner A, Khatri S, Blichmann D, Voss SR. Rediscovering the axolotl as a model for thyroid hormone dependent development. Front Endocrinol. 2019;10:237.

Whiteman HH. Evolution of facultative paedomorphosis in salamanders. Q Rev Biol. 1994;69(2):205-221.

Denoël M, Joly P, Whiteman HH. Evolutionary ecology of facultative paedomorphosis in newts and salamanders. Biol Rev Camb Philos Soc. 2005;80(4):663-671.

Gresens J. An introduction to the Mexican axolotl (Ambystoma mexicanum). Lab Anim. 2004;33(9):41-47.

Khattak S, Murawala P, Andreas H, et al. Optimized axolotl (Ambystoma mexicanum) husbandry, breeding, metamorphosis, transgenesis and tamoxifen-mediated recombination. Nat Protoc. 2014;9(3):529-540.

Malacinski GM. The Mexican axolotl, Ambystoma mexicanum: its biology and developmental genetics, and its autonomous cell-lethal genes. Am Zool. 1978;18(2):195-206.

Voss SR, Epperlein HH, Tanaka EM. Ambystoma mexicanum, the axolotl: a versatile amphibian model for regeneration, development, and evolution studies. Cold Spring Harb Protoc. 2009;2009(8):1-8.

Schreckenberg GM, Jacobson AG. Normal stages of development of the axolotl, Ambystoma Mexicanum. Dev Biol. 1975;42(2):391-399.

Brown DD. The role of thyroid hormone in zebrafish and axolotl development. Proc Natl Acad Sci U S A. 1997;94(24):13011-13016.

Northcutt RG, Catania KC, Criley BB. Development of lateral line organs in the axolotl. J Comp Neurol. 1994;340(4):480-514.

McCusker C, Gardiner DM. The axolotl model for regeneration and aging research: a mini-review. Gerontology. 2011;57(6):565-571.

Kragl M, Knapp D, Nacu E, et al. Cells keep a memory of their tissue origin during axolotl limb regeneration. Nature. 2009;460(7251):60-65.

Cano-Martínez A, Vargas-González A, Guarner-Lans V, Prado-Zayago E, León-Oleda M, Nieto-Lima B. Functional and structural regeneration in the axolotl heart (Ambystoma mexicanum) after partial ventricular amputation. Arch Cardiol Mex. 2010;80(2):79-86.

Flink IL. Cell cycle reentry of ventricular and atrial cardiomyocytes and cells within the epicardium following amputation of the ventricular apex in the axolotl, Ambystoma mexicanum: confocal microscopic immunofluorescent image analysis of bromodeoxyuridine-labeled nuclei. Anat Embryol. 2002;205(3):235-244.

Alanis J, Benitez D, Lopez E, Martinez-Palomo A. Impulse propagation through the cardiac junctional regions of the axolotl and the turtle. Jpn J Physiol. 1973;23(2):149-164.

Epstein ML, Lemanski LF. Electrical activity in cardiac mutant axolotl hearts. J Exp Zool. 1980;211(2):131-136.

Genat B, Mark R, Barlow HB, Gaze RM. Electrophysiological experiments on the mechanism and accuracy of neuromuscular specificity in the axolotl. Phil Trans R Soc Lond B. 1977;278(961):335-347.

Demircan T, İlhan AE, Aytürk N, Yıldırım B, Öztürk G, Keskin İ. A histological atlas of the tissues and organs of neotenic and metamorphosed axolotl. Acta Histochem. 2016;118(7):746-759.

De Groef B, Grommen SV, Darras VM. Forever young: endocrinology of paedomorphosis in the Mexican axolotl (Ambystoma mexicanum). Gen Comp Endocrinol. 2018;266:194-201.

Lemanski LF. Morphology of developing heart in cardiac lethal mutant Mexican axolotls, Ambystoma mexicanum. Dev Biol. 1973;33(2):312-333.

Justus JT, Hollander PB. Electrophysiology studies on the cardiac non-function mutation in the mexican axolotl, Ambystoma mexicanum. Experientia. 1971;27(9):1040-1041.

Jensen B, Joyce W, Gregorovicova M, Sedmera D, Wang T, Christoffels VM. Low incidence of atrial septal defects in nonmammalian vertebrates. Evol Dev. 2019;22(3):241-256.

Johansen K, Burggren WW. Cardiovascular function in the lower vertebrates. In: Bourne GH, ed. Heart and Heart-Like Organs. New York, NY: Academic Press; 1980:61-117.

Pough FH. The advantages of ectothermy for tetrapods. Am Nat. 1980;115(1):92-112.

Gargaglioni LH, Milsom WK. Control of breathing in anuran amphibians. Comp Biochem Physiol A Mol Integr Physiol. 2007;147(3):665-684.

Lewis ZR, Hanken J. Convergent evolutionary reduction of atrial septation in lungless salamanders. J Anat. 2017;230(1):16-29.

Gahlenbeck H, Bartels H. Blood gas transport properties in gill and lung forms of the axolotl (Ambystoma mexicanum). Respir Physiol. 1970;9(2):175-182.

Perry SF, Sander M. Reconstructing the evolution of the respiratory apparatus in tetrapods. Respir Physiol Neurobiol. 2004;144(2-3):125-139.

Monaghan JR, Stier AC, Michonneau F, et al. Experimentally induced metamorphosis in axolotls reduces regenerative rate and fidelity. Regeneration. 2014;1(1):2-14.

Sibai M, Altuntaş E, Süzek BE, et al. Comparison of protein expression profile of limb regeneration between neotenic and metamorphic axolotl. Biochem Biophys Res Commun. 2020;522(2):428-434.

Demircan T, Ovezmyradov G, Yıldırım B, et al. Experimentally induced metamorphosis in highly regenerative axolotl (Ambystoma mexicanum) under constant diet restructures microbiota. Sci Rep. 2018;8(1):1-12.

Shi YB, Wong J, Puzianowska-Kuznicka M, Stolow MA. Tadpole competence and tissue-specific temporal regulation of amphibian metamorphosis: roles of thyroid hormone and its receptors. Bioessays. 1996;18(5):391-399.

Buchholz DR, Tomita A, Fu L, Paul BD, Shi YB. Transgenic analysis reveals that thyroid hormone receptor is sufficient to mediate the thyroid hormone signal in frog metamorphosis. Mol Cell Biol. 2004;24(20):9026-9037.

Heimeier RA, Shi YB. Amphibian metamorphosis as a model for studying endocrine disruption on vertebrate development: effect of bisphenol a on thyroid hormone action. Gen Comp Endocrinol. 2010;168(2):181-189.

Vityazev VA, Azarov JE. Stretch-excitation correlation in the toad heart. J Exp Biol. 2020;223(23):1-5.

Azarov JE, Shmakov DN, Vityazev VA, Roshchevskaya IM, Roshchevsky MP. Activation and repolarization patterns in the ventricular epicardium under sinus rhythm in frog and rabbit hearts. Comp Biochem Physiol A. 2007;146(3):310-316.

Burggren WW, Doyle M. Ontogeny of heart rate regulation in the bullfrog, Rana catesbeiana. Am J Physiol. 1986;251(2):R231-R239.

Jensen D. Some observations on cardiac automatism in certain animals. J Gen Physiol. 1958;42(2):289-302.

Such L, Rodriguez A, Alberola A, et al. Intrinsic changes on automatism, conduction, and refractoriness by exercise in isolated rabbit heart. J Appl Physiol. 2002;92(1):225-229.

Lillo RS. Autonomic cardiovascular control during submergence and emergence in bullfrogs. Am J Physiol. 1979;237(3):R210-R216.

Burggren WW, Pinder AW. Ontogeny of cardiovascular and respiratory physiology in lower vertebrates. Annu Rev Physiol. 1991;53(1):107-135.

Langille BL, Jones DR. Dynamics of blood flow through the hearts and arterial systems of anuran amphibia. J Exp Biol. 1977;68(1):1-17.

Anderson RH, Brown NA, Webb S. Development and structure of the atrial septum. Heart. 2002;88(1):104-110.

López-Unzu MA, Soto-Navarrete MT, Sans-Coma V, Fernández B, Durán AC. Myosin heavy chain isoforms in the myocardium of the atrioventricular junction of Scyliorhinus canicula (Chondrichthyes, Carcharhiniformes). J Fish Biol. 2020;97(3):734-739.

Schiaffino S. Muscle fiber type diversity revealed by anti-myosin heavy chain antibodies. FEBS J. 2018;285(20):3688-3694.

Durán AC, López-Unzu MA, Rodríguez C, et al. Structure and vascularization of the ventricular myocardium in Holocephali: their evolutionary significance. J Anat. 2015;226(6):501-510.

López-Unzu MA, Durán AC, Soto-Navarrete MT, Sans-Coma V, Fernández B. Differential expression of myosin heavy chain isoforms in cardiac segments of gnathostome vertebrates and its evolutionary implications. Front Zool. 2019;16(1):1-15.

Kinoshita M, Ariizumi T, Yuasa S, et al. Creating frog heart as an organ: in vitro-induced heart functions as a circulatory organ in vivo. Int J Dev Biol. 2010;54(5):851-856.

Marshall L, Vivien C, Girardot F, et al. Persistent fibrosis, hypertrophy and sarcomere disorganisation after endoscopy-guided heart resection in adult Xenopus. PLoS One. 2017;12(3):e0173418.

Liao S, Dong W, Lv L, et al. Heart regeneration in adult Xenopus tropicalis after apical resection. Cell Biosci. 2017;7(1):1-16.

Nakano H, Minami I, Braas D, et al. Glucose inhibits cardiac muscle maturation through nucleotide biosynthesis. Elife. 2017;6:e29330.

Bridgewater S. Out of the ocean, the origins of Belizean life. A Natural History of Belize: inside the Maya Forest. Austin: University of Texas Press; 2012:18-73.

Brockes JP. Variation in salamanders: an essay on genomes, development, and evolution. Methods Mol Biol. 2015;1290(3):3-15.

Smith JJ, Voss SR. Gene order data from a model amphibian (Ambystoma): new perspectives on vertebrate genome structure and evolution. BMC Genomics. 2006;7(1):1-12.

Johansen K, Hanson D. Functional anatomy of the hearts of lungfishes and amphibians. Am Zool. 1968;8(2):191-210.

Pyron RA, Wiens JJ. A large-scale phylogeny of Amphibia including over 2800 species, and a revised classification of extant frogs, salamanders, and caecilians. Mol Phylogenet Evol. 2011;61(2):543-583.

Johnson CK, Voss SR. Salamander paedomorphosis: linking thyroid hormone to life history and life cycle evolution. Curr Top Dev Biol. 2013;103:229-258.

Crump ML. Anuran reproductive modes: evolving perspectives. J Herpetol. 2015;49(1):1-16.

Shaffer HB, Austin C, Huey RJ. The consequences of metamorphosis on salamander (Ambystoma) locomotor performance. Physiol Zool. 1991;64(1):212-231.

Taigen TL. Activity metabolism of anuran amphibians: implications for the origin of endothermy. Am Nat. 1983;121(1):94-109.

Licht LE, Lowcock LA. Genome size and metabolic rate in salamanders. Comp Biochem Physiol B Biochem Mol Biol. 1991;100(1):83-92.

Pough FH, Kamel S. Post-metamorphic change in activity metabolism of anurans in relation to life history. Oecologia. 1984;65(1):138-144.

Wiens JJ, Bonett RM, Chippindale PT. Ontogeny discombobulates phylogeny: paedomorphosis and higher-level salamander relationships. Syst Biol. 2005;54(1):91-110.

Putnam JL. Anatomy of the heart of the Amphibia. I Siren lacertina. Copeia. 1977;1977:476-488.

Putnam JL, Dunn JF. Septation in the ventricle of the heart of Necturus maculosus. Herpetologica. 1978;34(3):292-297.

Guimond RW, Hutchison VH. Aquatic respiration: an unusual strategy in the hellbender Cryptobranchus alleganiensis alleganiensis (Daudin). Science. 1973;182(4118):1263-1265.

Jensen B, Wang T, Moorman AF. Evolution and development of the atrial septum. Anat Rec. 2019;302(1):32-48.

Burggren WW, Filogonio R, Wang T. Cardiovascular shunting in vertebrates: a practical integration of competing hypotheses. Biol Rev Camb Philos Soc. 2020;95(2):449-471.

Wang T, Hedrick MS, Ihmied YM, Taylor EW. Control and interaction of the cardiovascular and respiratory systems in anuran amphibians. Comp Biochem Physiol A Mol Integr Physiol. 1999;124(4):393-406.

de Saint-Aubain ML. Blood flow patterns of the respiratory systems in larval and adult amphibians: functional morphology and phylogenetic significance. J Zoolog Syst Evol Res. 1985;23(3):229-240.

Hedrick MS, Palioca WB, Hillman SS. Effects of temperature and physical activity on blood flow shunts and intracardiac mixing in the toad Bufo marinus. Physiol Biochem Zool. 1999;72(5):509-519.

Wang T, Krosniunas EH, Hicks JW. The role of cardiac shunts in the regulation of arterial blood gases. Am Zool. 1997;37(1):12-22.

Hillman SS, Hedrick MS, Kohl ZF. Net cardiac shunts in anuran amphibians: physiology or physics? J Exp Biol. 2014;217(16):2844-2847.

Holmes EB. A reconsideration of the phylogeny of the tetrapod heart. J Morphol. 1975;147(2):209-228.

Joss JM. Lungfish evolution and development. Gen Comp Endocrinol. 2006;148(3):285-289.

Kemp A, Cavin L, Guinot G. Evolutionary history of lungfishes with a new phylogeny of post-Devonian genera. Palaeogeogr Palaeoclimatol Palaeoecol. 2017;471:209-219.

Anderson JS, Reisz RR, Scott D, Fröbisch NB, Sumida SS. A stem batrachian from the early Permian of Texas and the origin of frogs and salamanders. Nature. 2008;453(7194):515-518.

Arbel ER, Liberthson R, Langendorf R, Pick A, Lev M, Fishman AP. Electrophysiological and anatomical observations on the heart of the African lungfish. Am J Physiol. 1977;232(1):H24-H34.

Icardo JM. Heart morphology and anatomy. Fish Physiology. Vol 36. Cambridge: Elsevier; 2017:1-54.

Kollros JJ. Mechanisms of amphibian metamorphosis: hormones. Am Zool. 1961;1:107-114.

Mitchell MA. Anesthetic considerations for amphibians. J Exot Pet Med. 2009;18(1):40-49.

Kvasilova A, Olejnickova V, Jensen B, et al. The formation of the atrioventricular conduction axis is linked in development to ventricular septation. J Exp Biol. 2020;223(19):1-5.

Metscher BD. MicroCT for comparative morphology: simple staining methods allow high-contrast 3D imaging of diverse non-mineralized animal tissues. BMC Physiol. 2009;9(1):11.

Helsby MA, Leader PM, Fenn JR, et al. CiteAb: a searchable antibody database that ranks antibodies by the number of times they have been cited. BMC Cell Biol. 2014;15(1):1-12.

Olejnickova V, Sedmera DJ. What is the optimal light source for optical mapping using voltage-and calcium-sensitive dyes? Physiol Res. 2020;69(4):599-607.

Olejnickova V, Sankova B, Sedmera D, Janacek J. Trabecular architecture determines impulse propagation through the early embryonic mouse heart. Front Physiol. 2019;9:1876.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...