Anguimorpha as a model group for studying the comparative heart morphology among Lepidosauria: Evolutionary window on the ventricular septation

. 2022 Nov ; 12 (11) : e9476. [epub] 20221108

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36381397

The group Anguimorpha represents one of the most unified squamate clades in terms of body plan, ecomorphology, ecophysiology and evolution. On the other hand, the anguimorphs vary between different habitats and ecological niches. Therefore, we focused on the group Anguimorpha to test a possible correlation between heart morphology and ecological niche with respect to phylogenetic position in Squamata with Sphenodon, Salvator, and Pogona as the outgroups. The chosen lepidosaurian species were investigated by microCT. Generally, all lepidosaurs had two well-developed atria with complete interatrial septum and one ventricle divided by ventricular septa to three different areas. The ventricles of all lepidosaurians had a compact layer and abundant trabeculae. The compact layer and trabeculae were developed in accordance with particular ecological niche of the species, the trabeculae in nocturnal animals with low metabolism, such as Sphenodon, Heloderma or Lanthanotus were more massive. On the other hand athletic animals, such as varanids or Salvator, had ventricle compartmentalization divided by three incomplete septa. A difference between varanids and Salvator was found in compact layer thickness: thicker in monitor lizards and possibly linked to their mammalian-like high blood pressure, and the level of ventricular septation. In summary: heart morphology varied among clades in connection with the ecological niche of particular species and it reflects the phylogenetic position in model clade Anguimorpha. In the absence of fossil evidence, this is the closest approach how to understand heart evolution and septation in clade with different cardiac compartmentalization levels.

Zobrazit více v PubMed

Albuquerque, R. L. , & Garland, T., Jr. (2020). Phylogenetic analysis of maximal oxygen consumption during exercise (V̇O2max) and ecological correlates among lizard species. Journal of Experimental Biology, 223(24), jeb229013. PubMed

Andrews, R. M. , & Pough, F. H. (1985). Metabolism of squamate reptiles: Allometric and ecological relationships. Physiological Zoology, 58(2), 214–231.

Ast, J. C. (2001). Mitochondrial DNA evidence and evolution in Varanoidea (Squamata). Cladistics, 17(3), 211–226. PubMed

Axelsson, M. , Franklin, C. E. , Löfman, C. O. , Nilsson, S. , & Grigg, G. C. (1996). Dynamic anatomical study of cardiac shunting in crocodiles using high‐resolution angioscopy. The Journal of Experimental Biology, 199(2), 359–365. PubMed

Bartholomew, G. A. , & Tucker, V. A. (1964). Size, body temperature, thermal conductance, oxygen consumption, and heart rate in Australian varanid lizards. Physiological Zoology, 37(4), 341–354.

Beck, D. , & Lowe, C. H. (1994). Resting metabolism of helodermatid lizards: Allometric and ecological relationships. Journal of Comparative Physiology B, 164(2), 124–129.

Bettex, D. A. , Prêtre, R. , & Chassot, P.‐G. (2014). Is our heart a well‐designed pump? The heart along animal evolution. European Heart Journal, 35(34), 2322–2332. 10.1093/eurheartj/ehu222 PubMed DOI

Blank, J. M. , Morrissette, J. M. , Landeira‐Fernandez, A. M. , Blackwell, S. B. , Williams, T. D. , & Block, B. A. (2004). In situ cardiac performance of Pacific bluefin tuna hearts in response to acute temperature change. Journal of Experimental Biology, 207(5), 881–890. 10.1242/jeb.00820 PubMed DOI

Brennan, I. G. , Lemmon, A. R. , Lemmon, E. M. , Portik, D. M. , Weijola, V. , Welton, L. , Donnellan, S. C. , & Keogh, J. S. (2021). Phylogenomics of monitor lizards and the role of competition in dictating body size disparity. Systematic Biology, 70(1), 120–132. 10.1093/sysbio/syaa046 PubMed DOI

Brongersma, L. D. (1951). Some remarks on the pulmonary artery in snakes with two lungs. Zoologische Verhandelingen, 14(1), 1–36.

Brusatte, S. L. , Benton, M. J. , Desojo, J. B. , & Langer, M. C. (2010). The higher‐level phylogeny of Archosauria (Tetrapoda: Diapsida). Journal of Systematic Palaeontology, 8(1), 3–47. 10.1080/14772010903537732 DOI

Burggren, W. , Christoffels, V. , Crossley, D., II. , Enok, S. , Farrell, A. P. , Hedrick, M. S. , Hick, J. W. , Jensen, B. , Moorman, A. F. M. , Mueller, C. J. , Skovgaard, N. , Taylor, E. W. , & Wang, T. (2014). Comparative cardiovascular physiology: Future trends, opportunities and challenges. Acta Physiologica, 210(2), 257–276. 10.1111/apha.12170 PubMed DOI

Burggren, W. , Filogonio, R. , & Wang, T. (2020). Cardiovascular shunting in vertebrates: A practical integration of competing hypotheses. Biological Reviews, 95(2), 449–471. 10.1111/brv.12572 PubMed DOI

Burggren, W. , & Johansen, K. (1982). Ventricular haemodynamics in the monitor lizard Varanus exanthematicus: Pulmonary and systemic pressure separation. Journal of Experimental Biology, 96(1), 343–354.

Burggren, W. W. (1987). Form and function in reptilian circulations. American Zoologist, 27(1), 5–19.

Bushnell, P. G. , & Brill, R. W. (1992). Oxygen transport and cardiovascular responses in skipjack tuna (Katsuwonus pelamis) and yellowfin tuna (Thunnus albacares) exposed to acute hypoxia. Journal of Comparative Physiology B, 162(2), 131–143. PubMed

Bushnell, P. G. , & Jones, D. R. (1994). Cardiovascular and respiratory physiology of tuna: Adaptations for support of exceptionally high metabolic rates. Environmental Biology of Fishes, 40(3), 303–318.

Camargo, A. , Sinervo, B. , & Sites, J. W., Jr. (2010). Lizards as model organisms for linking phylogeographic and speciation studies. Molecular Ecology, 19(16), 3250–3270. 10.1111/j.1365-294X.2010.04722.x PubMed DOI

Cechin, S. Z. , Winck, G. R. , & Blanco, C. C. (2011). Population ecology of Tupinambis merianae (Squamata, Teiidae): Home‐range, activity and space use. Animal Biology, 61(4), 493–510. 10.1163/157075511X597647 DOI

Chiari, Y. , Cahais, V. , Galtier, N. , & Delsuc, F. (2012). Phylogenomic analyses support the position of turtles as the sister group of birds and crocodiles (Archosauria). BMC Biology, 10(1), 65. 10.1186/1741-7007-10-65 PubMed DOI PMC

Clemente, C. J. , Withers, P. C. , & Thompson, G. G. (2009). Metabolic rate and endurance capacity in Australian varanid lizards (Squamata: Varanidae: Varanus). Biological Journal of the Linnean Society, 97(3), 664–676.

Crawford, N. G. , Parham, J. F. , Sellas, A. B. , Faircloth, B. C. , Glenn, T. C. , Papenfuss, T. J. , Henderson, J. B. , Hansen, M. H. , & Simison, W. B. (2015). A phylogenomic analysis of turtles. Molecular Phylogenetics and Evolution, 83, 250–257. PubMed

Cree, A. (2014). Tuatara: Biology and conservation of a venerable survivor. Canterbury University Press.

Cross, S. L. , Craig, M. D. , Tomlinson, S. , Dixon, K. W. , & Bateman, P. W. (2020). Using monitors to monitor ecological restoration: Presence may not indicate persistence. Austral Ecology, 45(7), 921–932. 10.1111/aec.12905 DOI

Crossley, D. A. , & Burggren, W. W. (2009). Development of cardiac form and function in ectothermic sauropsids. Journal of Morphology, 270(11), 1400–1412. PubMed

Farmer, C. (2011). On the evolution of arterial vascular patterns of tetrapods. Journal of Morphology, 272(11), 1325–1341. PubMed

Farrell, A. , Farrell, N. , Jourdan, H. , & Cox, G. (2012). A perspective on the evolution of the coronary circulation in fishes and the transition to terrestrial life. In Ontogeny and phylogeny of the vertebrate heart (pp. 75–102). Springer. 10.1007/978-1-4614-3387-3_4 DOI

Farrell, A. , Gamperl, A. , & Francis, T. (1998). Comparative aspects of heart morphology. In Gans C. & Gaunt A. S. (Eds.), Morphology G: The visceral organs (pp. 375–424). SSAR.

Ferreguetti, Á. C. , Pereira‐Ribeiro, J. , Bergallo, H. G. , & Rocha, C. F. D. (2018). Abundance, density and activity of Salvator merianae (Reptilia: Teiidae) and the effect of poaching on the site occupancy by the lizard in an Atlantic Forest Reserve, Brazil. Austral Ecology, 43(6), 663–671. 10.1111/aec.12611 DOI

Filogonio, R. , Orsolini, K. F. , Oda, G. M. , Malte, H. , & Leite, C. A. (2020). Baroreflex gain and time of pressure decay at different body temperatures in the tegu lizard, Salvator merianae . PLoS One, 15(11), e0242346. 10.1371/journal.pone.0242346 PubMed DOI PMC

Fry, B. G. , Winter, K. , Norman, J. A. , Roelants, K. , Nabuurs, R. J. , Van Osch, M. J. , Teeuwisse, W. M. , Van Der Weerd, L. , Mcnaughtan, J. E. , & Kwok, H. F. (2010). Functional and structural diversification of the Anguimorpha lizard venom system. Molecular & Cellular Proteomics, 9(11), 2369–2390. PubMed PMC

Genge, C. , Hove‐Madsen, L. , & Tibbits, G. F. (2012). Functional and structural differences in atria versus ventricles in teleost hearts. In New Advances and Contributions to Fish Biology (pp. 221–245). IntechOpen.

Gillingham, J. C. , & Miller, T. J. (1991). Reproductive ethology of the Tuatara: Sphenodon punctatus: Applications in captive breeding. International Zoo Yearbook, 30(1), 157–164.

Greil, A. (1903). Beitrage zur vergleichenden Anatomie und entwicklungsgeschichte des Herzens und des truncus arteriosus der wirbelthiere. Morphologische Jahrbuch, 31, 123–210.

Grigg, G. C. , & Seebacher, F. (1999). Field test of a paradigm: Hysteresis of heart rate in thermoregulation by a free‐ranging lizard (Pogona barbata). Proceedings of the Royal Society of London B: Biological Sciences, 266(1425), 1291–1297. PubMed PMC

Hagensen, M. K. , Abe, A. S. , Falk, E. , & Wang, T. (2008). Physiological importance of the coronary arterial blood supply to the rattlesnake heart. Journal of Experimental Biology, 211(22), 3588–3593. PubMed

Hanemaaijer, J. , Gregorovicova, M. , Nielsen, J. M. , Moorman, A. F. , Wang, T. , Planken, R. N. , Christoffels, V. M. , Sedmera, D. , & Jensen, B. (2019). Identification of the building blocks of ventricular septation in monitor lizards (Varanidae). Development, 146(14), 1–10. 10.1242/dev.177121 PubMed DOI

Harmon, L. J. , Kolbe, J. J. , Cheverud, J. M. , & Losos, J. B. (2005). Convergence and the multidimensional niche. Evolution, 59(2), 409–421. PubMed

Hedges, S. B. , & Poling, L. L. (1999). A molecular phylogeny of reptiles. Science, 283(5404), 998–1001. 10.1126/science.283.5404.998 PubMed DOI

Heisler, N. , Neumann, P. , & Maloiy, G. (1983). The mechanism of intracardiac shunting in the lizard Varanus exanthematicus . Journal of Experimental Biology, 105(1), 15–31. PubMed

Hicks, J. , & Farrell, A. (2000). The cardiovascular responses of the red‐eared slider (Trachemys scripta) acclimated to either 22 or 5 degrees C. I. Effects of anoxic exposure on in vivo cardiac performance. Journal of Experimental Biology, 203(24), 3765–3774. PubMed

Hicks, J. W. (2002). The physiological and evolutionary significance of cardiovascular shunting patterns in reptiles. Physiology, 17(6), 241–245. 10.1152/nips.01397.2002 PubMed DOI

Hicks, J. W. , Ishimatsu, A. , Molloi, S. , Erskin, A. , & Heisler, N. (1996). The mechanism of cardiac shunting in reptiles: A new synthesis. The Journal of Experimental Biology, 199(6), 1435–1446. PubMed

Hicks, J. W. , & Wang, T. (1996). Functional role of cardiac shunts in reptiles. Journal of Experimental Zoology Part A: Ecological Genetics and Physiology, 275(2–3), 204–216.

Hicks, J. W. , & Wood, S. C. (1985). Temperature regulation in lizards: Effects of hypoxia. American Journal of Physiology‐Regulatory, Integrative and Comparative Physiology, 248(5), R595–R600. PubMed

Hillenius, W. J. , & Ruben, J. A. (2004). The evolution of endothermy in terrestrial vertebrates: Who? When? Why? Physiological and Biochemical Zoology, 77(6), 1019–1042. PubMed

Holmes, E. B. (1975). A reconsideration of the phylogeny of the tetrapod heart. Journal of Morphology, 147(2), 209–228. PubMed

Hopson, J. A. (2012). The role of foraging mode in the origin of therapsids: Implications for the origin of mammalian endothermy. Fieldiana Life and Earth Sciences, 2012(5), 126–148.

Huey, R. B. , & Stevenson, R. (1979). Integrating thermal physiology and ecology of ectotherms: A discussion of approaches. American Zoologist, 19(1), 357–366.

Jensen, B. , & Christoffels, V. M. (2020). Reptiles as a model system to study heart development. Cold Spring Harbor Perspectives in Biology, 12(5), 1–20. 10.1101/cshperspect.a037226 PubMed DOI PMC

Jensen, B. , Moorman, A. F. , & Wang, T. (2014). Structure and function of the hearts of lizards and snakes. Biological Reviews, 89(2), 302–336. 10.1111/brv.12056 PubMed DOI

Jensen, B. , Nielsen, J. M. , Axelsson, M. , Pedersen, M. , Lofman, C. , & Wang, T. (2010). How the python heart separates pulmonary and systemic blood pressures and blood flows. Journal of Experimental Biology, 213(Pt 10), 1611–1617. 10.1242/jeb.030999 PubMed DOI

Jensen, B. , Nyengaard, J. R. , Pedersen, M. , & Wang, T. (2010). Anatomy of the python heart. Anatomical Science International, 85(4), 194–203. 10.1007/s12565-010-0079-1 PubMed DOI

Jewhurst, K. , & McLaughlin, K. A. (2015). Beyond the mammalian heart: Fish and amphibians as a model for cardiac repair and regeneration. Journal of Developmental Biology, 4(1), 1. 10.3390/jdb4010001 PubMed DOI PMC

Johansen, K. , & Burggren, W. W. (1984). Venous return and cardiac filling in varanid lizards. Journal of Experimental Biology, 113(Nov), 389–399.

Johansen, K. , & Hanson, D. (1968). Functional anatomy of the hearts of lungfishes and amphibians. American Zoologist, 8(2), 191–210. PubMed

Jones, M. E. , Anderson, C. L. , Hipsley, C. A. , Müller, J. , Evans, S. E. , & Schoch, R. R. (2013). Integration of molecules and new fossils supports a Triassic origin for Lepidosauria (lizards, snakes, and tuatara). BMC Evolutionary Biology, 13(1), 1–21. 10.1186/1471-2148-13-208 PubMed DOI PMC

Joyce, W. G. , Anquetin, J. , Cadena, E.‐A. , Claude, J. , Danilov, I. G. , Evers, S. W. , Ferreira, G. S. , Gentry, A. D. , Georgalis, G. L. , & Lyson, T. R. (2021). A nomenclature for fossil and living turtles using phylogenetically defined clade names. Swiss Journal of Palaeontology, 140(1), 1–45.

Klaiman, J. M. , Fenna, A. J. , Shiels, H. A. , Macri, J. , & Gillis, T. E. (2011). Cardiac remodeling in fish: Strategies to maintain heart function during temperature change. PLoS One, 6(9), e24464. 10.1371/journal.pone.0024464 PubMed DOI PMC

Köhler, G. , Griesshammer, K. , & Schuster, N. (2003). Bartagamen. Lebensweise. Haltung. Zucht. Erkrankungen. Herpeton.

Koludarov, I. , Jackson, T. N. , op den Brouw, B. , Dobson, J. , Dashevsky, D. , Arbuckle, K. , Clemente, C. J. , Stockdale, E. J. , Cochran, C. , & Debono, J. (2017). Enter the dragon: The dynamic and multifunctional evolution of Anguimorpha lizard venoms. Toxins, 9(8), 242. PubMed PMC

Koshiba‐Takeuchi, K. , Mori, A. D. , Kaynak, B. L. , Cebra‐Thomas, J. , Sukonnik, T. , Georges, R. O. , Latham, S. , Beck, L. , Henkelman, R. M. , Black, B. L. , Olson, E. N. , Wade, J. , Takeuchi, J. K. , Nemer, M. , Gilbert, S. F. , & Bruneau, B. G. (2009). Reptilian heart development and the molecular basis of cardiac chamber evolution. Nature, 461(7260), 95–98. 10.1038/nature08324 PubMed DOI PMC

Kvasilova, A. , Gregorovicova, M. , Kundrat, M. , & Sedmera, D. (2018). HNK‐1 in morphological study of development of the cardiac conduction system in selected groups of sauropsida. The Anatomical Record, 302, 69–82. 10.1002/ar.23925 PubMed DOI

Losos, J. B. , & Greene, H. W. (1988). Ecological and evolutionary implications of diet in monitor lizards. Biological Journal of the Linnean Society, 35(4), 379–407.

MacKinnon, M. , & Heatwole, H. (1981). Comparative cardiac anatomy of the reptilia. IV. The coronary arterial circulation. Journal of Morphology, 170(1), 1–27. PubMed

Meinertz, T. (1966). A study on the heart in the tuatara, Sphenodon (Hatteria) punctatus Gray. Gegenbaurs Morphologisches Jahrbuch, 108(4), 568–594. PubMed

Mesquita, D. O. , Costa, G. C. , Colli, G. R. , Costa, T. B. , Shepard, D. B. , Vitt, L. J. , & Pianka, E. R. (2016). Life‐history patterns of lizards of the world. The American Naturalist, 187(6), 689–705. 10.1086/686055 PubMed DOI

Metscher, B. D. (2009). MicroCT for comparative morphology: Simple staining methods allow high‐contrast 3D imaging of diverse non‐mineralized animal tissues. BMC Physiology, 9(1), 11. 10.1186/1472-6793-9-11 PubMed DOI PMC

Millard, R. , & Johansen, K. (1974). Ventricular outflow dynamics in the lizard, Varanus niloticus: Responses to hypoxia, hypercarbia and diving. Journal of Experimental Biology, 60(3), 871–880. PubMed

Moorman, A. F. , & Christoffels, V. M. (2003). Cardiac chamber formation: Development, genes, and evolution. Physiological Reviews, 83(4), 1223–1267. 10.1152/physrev.00006.2003 PubMed DOI

Morgan, K. R. (1988). Body temperature, energy metabolism, and stamina in two neotropical forest lizards (Ameiva, Teiidae). Journal of Herpetology, 22(2), 236–241.

Noonan, B. P. , & Chippindale, P. T. (2006). Dispersal and vicariance: The complex evolutionary history of boid snakes. Molecular Phylogenetics and Evolution, 40(2), 347–358. PubMed

O'Donoghue, C. H. (1921). The blood vascular system of the Tuatara, Sphenodon punctatus . Philosophical Transactions of the Royal Society of London. Series B, Containing Papers of a Biological Character, 210(372–381), 175–252.

Olejnickova, V. , Kolesova, H. , Bartos, M. , Sedmera, D. , & Gregorovicova, M. (2021). The Tale‐Tell Heart: Evolutionary tetrapod shift from aquatic to terrestrial life‐style reflected in heart changes in axolotl (Ambystoma mexicanum). Developmental Dynamics, 251, 1004–1014. 10.1002/dvdy413 PubMed DOI

Oštádal, B. (1999). Comparative aspects of the cardiac blood supply. Advances in Organ Biology, 7, 91–110.

Perry, S. F. (1998). Lungs: Comparative anatomy, functional morphology, and evolution. Biology of the Reptilia, 19(1), 1–92.

Pianka, E. , & King, D. (2004). Varanoid lizards of the world. Indiana University Press.

Pianka, E. R. (1994). Comparative ecology of Varanus in the Great Victoria desert. Australian Journal of Ecology, 19(4), 395–408.

Pianka, E. R. (1995). Evolution of body size: Varanid lizards as a model system. Journal of the American Naturalist, 146(3), 398–414.

Piercy, J. , Rogers, K. , Reichert, M. , Andrade, D. V. , Abe, A. S. , Tattersall, G. J. , & Milsom, W. K. (2015). The relationship between body temperature, heart rate, breathing rate, and rate of oxygen consumption, in the tegu lizard (Tupinambis merianae) at various levels of activity. Journal of Comparative Physiology B, 185(8), 891–903. 10.1007/s00360-015-0927-3 PubMed DOI

Poelmann, R. E. , & Gittenberger‐de Groot, A. C. (2019). Development and evolution of the metazoan heart. Developmental Dynamics, 248(8), 634–656. 10.1002/dvdy.45 PubMed DOI PMC

Poelmann, R. E. , Gittenberger‐De Groot, A. C. , Vicente‐Steijn, R. , Wisse, L. J. , Bartelings, M. M. , Everts, S. , Hoppenbrouwers, T. , Kruithof, B. P. T. , Jensen, B. , de Bruin, P. W. , Hirasawa, T. , Kuratani, S. , Vonk, F. , van de Put, J. M. M. S. , de Bakker, M. A. , & Richardson, M. K. (2014). Evolution and development of ventricular septation in the amniote heart. PLoS One, 9(9), e106569. 10.1371/journal.pone.0106569 PubMed DOI PMC

Pough, F. H. (1973). Lizard energetics and diet. Ecology, 54(4), 837–844.

Putnam, J. L. (1977). Anatomy of the heart of the Amphibia. I. Siren lacertina. Copeia, 1977, 476–488.

Pyron, R. A. , Burbrink, F. T. , & Wiens, J. J. (2013). A phylogeny and revised classification of Squamata, including 4161 species of lizards and snakes. BMC Evolutionary Biology, 13(1), 93. 10.1186/1471-2148-13-93 PubMed DOI PMC

Reynolds, R. G. , Niemiller, M. L. , & Revell, L. J. (2014). Toward a Tree‐of‐Life for the boas and pythons: Multilocus species‐level phylogeny with unprecedented taxon sampling. Molecular Phylogenetics and Evolution, 71, 201–213. PubMed

Rodda, G. H. (2020). Lizards of the world: Natural history and taxon accounts. Johns Hopkins University Press.

Sanders, C. E. , Tattersall, G. J. , Reichert, M. , Andrade, D. V. , Abe, A. S. , & Milsom, W. K. (2015). Daily and annual cycles in thermoregulatory behaviour and cardio‐respiratory physiology of black and white tegu lizards. Journal of Comparative Physiology B, 185(8), 905–915. PubMed

Sedmera, D. , Pexieder, T. , Vuillemin, M. , Thompson, R. P. , & Anderson, R. H. (2000). Developmental patterning of the myocardium. The Anatomical Record: An Official Publication of the American Association of Anatomists, 258(4), 319–337. PubMed

Sedmera, D. , Reckova, M. , Sedmerova, M. , Biermann, M. , Volejnik, J. , Sarre, A. , Raddatz, E. , McCarthy, R. A. , Gourdie, R. G. , & Thompson, R. P. (2003). Functional and morphological evidence for a ventricular conduction system in zebrafish and Xenopus hearts. American Journal of Physiology‐Heart and Circulatory Physiology, 284(4), H1152–H1160. 10.1152/ajpheart.00870.2002 PubMed DOI

Seebacher, F. , & Franklin, C. E. (2001). Control of heart rate during thermoregulation in the heliothermic lizard Pogona barbata: Importance of cholinergic and adrenergic mechanisms. Journal of Experimental Biology, 204(24), 4361–4366. PubMed

Seebacher, F. , & Grigg, G. (2001). Changes in heart rate are important for thermoregulation in the varanid lizard Varanus varius . Journal of Comparative Physiology B, 171(5), 395–400. 10.1007/s003600100188 PubMed DOI

Seymour, R. S. , Smith, S. L. , White, C. R. , Henderson, D. M. , & Schwarz‐Wings, D. (2012). Blood flow to long bones indicates activity metabolism in mammals, reptiles and dinosaurs. Proceedings of the Royal Society B: Biological Sciences, 279(1728), 451–456. PubMed PMC

Simões, K. , Vicentini, C. , Orsi, A. , & Cruz, C. (2002). Myoarchitecture and vasculature of the heart ventricle in some freshwater teleosts. Journal of Anatomy, 200(5), 467–475. 10.1046/j.1469-7580.2002.00023.x PubMed DOI PMC

Simões, T. R. , Kammerer, C. F. , Caldwell, M. W. , & Pierce, S. E. (2022). Successive climate crises in the deep past drove the early evolution and radiation of reptiles. Science Advances, 8(33), eabq1898. PubMed PMC

Simons, J. (1965). The heart of the Tuatara Sphenodon punctatus . Proceedings of the Zoological Society of London, 146(4), 451–466.

Skovgaard, N. , Abe, A. S. , Andrade, D. V. , & Wang, T. (2005). Hypoxic pulmonary vasoconstriction in reptiles: A comparative study of four species with different lung structures and pulmonary blood pressures. American Journal of Physiology‐Regulatory, Integrative and Comparative Physiology, 289(5), R1280–R1288. 10.1152/ajpregu.00200.2005 PubMed DOI

Srbek‐Araujo, A. C. , Guimarães, L. J. , & Costa‐Braga, D. (2020). Activity pattern of the Black‐and‐White Tegu, Salvator merianae (Squamata, Teiidae), in an Atlantic Forest remnant in southeastern Brazil. Herpetology Notes, 13, 93–99.

Starck, J. M. , & Wyneken, J. (2022). Comparative and functional anatomy of the ectothermic sauropsid heart. Veterinary Clinics: Exotic Animal Practice, 25(2), 337–366. PubMed

Summers, A. P. (2005). Evolution: Warm‐hearted crocs. Nature, 434(7035), 833–834. 10.1038/434833a PubMed DOI

Tattersall, G. J. , Leite, C. A. , Sanders, C. E. , Cadena, V. , Andrade, D. V. , Abe, A. S. , & Milsom, W. K. (2016). Seasonal reproductive endothermy in tegu lizards. Science Advances, 2(1), e1500951. PubMed PMC

Thompson, G. G. , & Withers, P. C. (1997). Standard and maximal metabolic rates of goannas (Squamata: Varanidae). Physiological Zoology, 70(3), 307–323. PubMed

Thompson, M. B. , & Daugherty, C. H. (1998). Metabolism of tuatara, Sphenodon punctatus . Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 119(2), 519–522. 10.1016/S1095-6433(97)00459-5 DOI

Toledo, L. F. , Brito, S. P. , Milsom, W. K. , Abe, A. S. , & Andrade, D. V. (2008). Effects of season, temperature, and body mass on the standard metabolic rate of tegu lizards (Tupinambis merianae). Physiological and Biochemical Zoology, 81(2), 158–164. 10.1086/524147 PubMed DOI

Tzika, A. C. , Helaers, R. , Schramm, G. , & Milinkovitch, M. C. (2011). Reptilian‐transcriptome v1.0, a glimpse in the brain transcriptome of five divergent Sauropsida lineages and the phylogenetic position of turtles. EvoDevo, 2, 19. 10.1186/2041-9139-2-19 PubMed DOI PMC

Vitt, L. J. , & Pianka, E. R. (2005). Deep history impacts present‐day ecology and biodiversity. Proceedings of the National Academy of Sciences, 102(22), 7877–7881. 10.1073/pnas.0501104102 PubMed DOI PMC

Wang, T. , KrosniunasI, E. H. , & Hicks, J. W. (1997). The role of cardiac shunts in the regulation of arterial blood gases. American Zoologist, 37(1), 12–22.

Wang, T. , Taylor, E. , Andrade, D. , & Abe, A. S. (2001). Autonomic control of heart rate during forced activity and digestion in the snake Boa constrictor . Journal of Experimental Biology, 204(20), 3553–3560. PubMed

Webb, G. , Heatwole, H. , & De Bavay, J. (1971). Comparative cardiac anatomy of the Reptilia. I. The chambers and septa of the varanid ventricle. Journal of Morphology, 134(3), 335–350. PubMed

Wells, R. , Tetens, V. , Housley, G. , Young, A. , Dawson, N. , & Johansen, K. (1990). Effect of temperature on control of breathing in the cryophilic Rhynchocephalian reptile, Sphenodon punctatus . Comparative Biochemistry and Physiology ‐ Part A: Physiology, 96(2), 333–340.

White, F. N. (1968). Functional anatomy of the heart of reptiles. American Zoologist, 8(2), 211–219. PubMed

Wiens, J. J. , Hutter, C. R. , Mulcahy, D. G. , Noonan, B. P. , Townsend, T. M. , Sites, J. W., Jr. , & Reeder, T. W. (2012). Resolving the phylogeny of lizards and snakes (Squamata) with extensive sampling of genes and species. Biology Letters, 8(6), 1043–1046. 10.1098/rsbl.2012.0703 PubMed DOI PMC

Wood, S. C. , Johansen, K. , Glass, M. L. , & Maloiy, G. (1978). Aerobic metabolism of the lizard Varanus exanthematicus: Effects of activity, temperature, and size. Journal of Comparative Physiology, 127(4), 331–336.

Zaar, M. , Overgaard, J. , Gesser, H. , & Wang, T. (2007). Contractile properties of the functionally divided python heart: Two sides of the same matter. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 146(2), 163–173. PubMed

Ziegler, T. , Quyet, L. K. , Thanh, V. N. , Hendrix, R. , & Boehme, W. (2008). A comparative study of crocodile lizards (Shinisaurus crocodilurus Ahl, 1930) from Vietnam and China. Raffles Bulletin of Zoology, 56(1), 181–187.

Zobrazit více v PubMed

Dryad
10.5061/dryad.crjdfn37k

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...