Addressing chemical pollution in biodiversity research

. 2023 Jun ; 29 (12) : 3240-3255. [epub] 20230408

Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic

Typ dokumentu přehledy, časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36943240

Grantová podpora
CZ.02.1.01/0.0/0.0/15_003/0000469 Czech Ministry of Education, Youth and Sports
CZ.02.1.01/0.0/0.0/17_043/0009632 Czech Ministry of Education, Youth and Sports
LM2018121 Czech Ministry of Education, Youth and Sports
101036756 Horizon 2020 Research and Innovation Programme, European Union
A18/BM/12341006 Luxembourg National Research Fund (FNR)
2018-00828 Svenska Forskningsrådet Formas
Swedish Foundation for Strategic Environmental Research MISTRA
2019-05191 Swedish Research Council

Climate change, biodiversity loss, and chemical pollution are planetary-scale emergencies requiring urgent mitigation actions. As these "triple crises" are deeply interlinked, they need to be tackled in an integrative manner. However, while climate change and biodiversity are often studied together, chemical pollution as a global change factor contributing to worldwide biodiversity loss has received much less attention in biodiversity research so far. Here, we review evidence showing that the multifaceted effects of anthropogenic chemicals in the environment are posing a growing threat to biodiversity and ecosystems. Therefore, failure to account for pollution effects may significantly undermine the success of biodiversity protection efforts. We argue that progress in understanding and counteracting the negative impact of chemical pollution on biodiversity requires collective efforts of scientists from different disciplines, including but not limited to ecology, ecotoxicology, and environmental chemistry. Importantly, recent developments in these fields have now enabled comprehensive studies that could efficiently address the manifold interactions between chemicals and ecosystems. Based on their experience with intricate studies of biodiversity, ecologists are well equipped to embrace the additional challenge of chemical complexity through interdisciplinary collaborations. This offers a unique opportunity to jointly advance a seminal frontier in pollution ecology and facilitate the development of innovative solutions for environmental protection.

Animal Physiological Ecology University of Tübingen Auf der Morgenstelle 5 D 72076 Tübingen Germany

Berlin Brandenburg Institute of Advanced Biodiversity Research 14195 Berlin Germany

Biodiversity Research Institute Portland Maine 04103 USA

Department of Biological and Environmental Sciences University of Gothenburg 40530 Gothenburg Sweden

Department of Biology University of Oxford South Parks Road OX1 3RB Oxford UK

Department of Earth Sciences and School of the Environment University of Toronto Toronto Ontario M5S 3B1 Canada

Department of Environmental Geosciences Centre for Microbiology and Environmental Systems Science University of Vienna Vienna 1090 Austria

Department of Environmental Science Stockholm University Stockholm Sweden

Department of Marine Sciences University of Connecticut Groton Connecticut USA

Department of Wildlife Fish and Environmental Studies Swedish University of Agricultural Sciences 90187 Umeå Sweden

Eawag Swiss Federal Institute of Aquatic Science and Technology 8600 Dübendorf Switzerland

Empa Swiss Federal Laboratories for Materials Science and Technology Technology and Society Laboratory CH 9014 St Gallen Switzerland

ETH Zürich Institute of Biogeochemistry and Pollutant Dynamics 8092 Zürich Switzerland

Freie Universität Berlin Institut für Biologie Altensteinstr 6 14195 Berlin Germany

Gothenburg Global Biodiversity Centre 40530 Gothenburg Sweden

Institute for Environmental Research RWTH Aachen University 52074 Aachen Germany

Institute for Inorganic and Analytical Chemistry Friedrich Schiller University Lessing Strasse 8 07743 Jena Germany

International Panel on Chemical Pollution 8092 Zürich Switzerland

Key Laboratory of the Three Gorges Reservoir Region's Eco Environment Chongqing University 400045 Chongqing China

Laboratório de Micropoluentes Jan Japenga Instituto de Biofísica Carlos Chagas Filho Universidade Federal do Rio de Janeiro Rio de Janeiro Brazil

Lund University Botanical Garden Lund Sweden

Luxembourg Centre for Systems Biomedicine University of Luxembourg 6 avenue du Swing 4367 Belvaux Luxembourg

Ostrhauderfehn Lower Saxony Germany

RECETOX Masaryk University 62500 Brno Czech Republic

Royal Botanic Gardens Kew Richmond Surrey TW9 3AE UK

School of Architecture Civil and Environmental Engineering EPF Lausanne 1015 Lausanne Switzerland

School of the Environment State Key Laboratory of Pollution Control and Resource Reuse 210023 Nanjing China

Transfer Center Ecotoxicology and Ecophysiology Blumenstr 13 D 72108 Rottenburg Germany

Zobrazit více v PubMed

Abdullahi, M., Zhou, J., Dandhapani, V., Chaturvedi, A., & Orsini, L. (2022). Historical exposure to chemicals reduces tolerance to novel chemical stress in daphnia (waterflea). Molecular Ecology, 31, 3098-3111.

Ankley, G. T., Bennett, R. S., Erickson, R. J., Hoff, D. J., Hornung, M. W., Johnson, R. D., Mount, D. R., Nichols, J. W., Russom, C. L., Schmieder, P. K., Serrrano, J. A., Tietge, J. E., & Villeneuve, D. L. (2010). Adverse outcome pathways: A conceptual framework to support ecotoxicology research and risk assessment. Environmental Toxicology and Chemistry, 29, 730-741.

Asner, G. P., & Tupayachi, R. (2016). Accelerated losses of protected forests from gold mining in the Peruvian Amazon. Environmental Research Letters, 12, 094004.

Ateweberhan, M., Feary, D. A., Keshavmurthy, S., Chen, A., Schleyer, M. H., & Sheppard, C. R. (2013). Climate change impacts on coral reefs: Synergies with local effects, possibilities for acclimation, and management implications. Marine Pollution Bulletin, 74, 526-539.

Bartlett, A. J., Hedges, A. M., Intini, K. D., Brown, L. R., Maisonneuve, F. J., Robinson, S. A., Gillis, P. L., & de Solla, S. R. (2018). Lethal and sublethal toxicity of neonicotinoid and butenolide insecticides to the mayfly, Hexagenia spp. Environmental Pollution, 238, 63-75.

Baste, I. A., & Watson, R. T. (2022). Tackling the climate, biodiversity and pollution emergencies by making peace with nature 50 years after the Stockholm conference. Global Environmental Change, 73, 102466.

Bath, S. (2018). The World's freshwater laboratory turns fifty. Limnology and Oceanography Bulletin, 27, 136-138.

Benton, T. G., Solan, M., Travis, J. M., & Sait, S. M. (2007). Microcosm experiments can inform global ecological problems. Trends in Ecology & Evolution, 22, 516-521.

Bernanke, J., & Köhler, H.-R. (2009). The impact of environmental chemicals on wildlife vertebrates. In D. M. Whitacre (Ed.), Reviews of environmental contamination and toxicology (pp. 1-47). Springer.

Bernhardt, E. S., Rosi, E. J., & Gessner, M. O. (2017). Synthetic chemicals as agents of global change. Frontiers in Ecology and the Environment, 15, 84-90.

Berny, P. (2007). Pesticides and the intoxication of wild animals. Journal of Veterinary Pharmacology and Therapeutics, 30, 93-100.

Bisi, T. L., Lepoint, G., Azevedo, A. D. F., Dorneles, P. R., Flach, L., Das, K., Malm, O., & Lailson-Brito, J. (2012). Trophic relationships and mercury biomagnification in Brazilian tropical coastal food webs. Ecological Indicators, 18, 291-302.

Bogdal, C., Scheringer, M., Abad, E., Abalos, M., van Bavel, B., Hagberg, J., & Fiedler, H. (2013). Worldwide distribution of persistent organic pollutants in air, including results of air monitoring by passive air sampling in five continents. TrAC Trends in Analytical Chemistry, 46, 150-161.

Boisvert, G., Sonne, C., Rigét, F. F., Dietz, R., & Letcher, R. J. (2019). Bioaccumulation and biomagnification of perfluoroalkyl acids and precursors in East Greenland polar bears and their ringed seal prey. Environmental Pollution, 252, 1335-1343.

Boivin, A., & Poulsen, V. (2017). Environmental risk assessment of pesticides: State of the art and prospective improvement from science. Environmental Science and Pollution Research International, 24, 6889-6894.

Brack, W., Ait-Aissa, S., Burgess, R. M., Busch, W., Creusot, N., Di Paolo, C., Escher, B. I., Mark Hewitt, L., Hilscherova, K., Hollender, J., Hollert, H., Jonker, W., Kool, J., Lamoree, M., Muschket, M., Neumann, S., Rostkowski, P., Ruttkies, C., Schollee, J., … Krauss, M. (2016). Effect-directed analysis supporting monitoring of aquatic environments-An in-depth overview. Science of the Total Environment, 544, 1073-1118.

Brodin, T., Fick, J., Jonsson, M., & Klaminder, J. (2013). Dilute concentrations of a psychiatric drug alter behavior of fish from natural populations. Science, 339, 814-815.

Brodin, T., Piovano, S., Fick, J., Klaminder, J., Heynen, M., & Jonsson, M. (2014). Ecological effects of pharmaceuticals in aquatic systems-Impacts through behavioural alterations. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 369, 20130580.

Brooks, B. W., Sabo-Attwood, T., Choi, K., Kim, S., Kostal, J., LaLone, C. A., Langan, L. M., Margiotta-Casaluci, L., You, J., & Zhang, X. (2020). Toxicology advances for 21(st) century chemical pollution. One Earth, 2, 312-316.

Buechley, E. R., & Şekercioğlu, Ç. H. (2016). The avian scavenger crisis: Looming extinctions, trophic cascades, and loss of critical ecosystem functions. Biological Conservation, 198, 220-228.

Caporale, A. G., & Violante, A. (2016). Chemical processes affecting the mobility of heavy metals and metalloids in soil environments. Current Pollution Reports, 2, 15-27.

Carraro, L., Mächler, E., Wüthrich, R., & Altermatt, F. (2020). Environmental DNA allows upscaling spatial patterns of biodiversity in freshwater ecosystems. Nature Communications, 11, 3585.

Cerveny, D., Fick, J., Klaminder, J., McCallum, E. S., Bertram, M. G., Castillo, N. A., & Brodin, T. (2021). Water temperature affects the biotransformation and accumulation of a psychoactive pharmaceutical and its metabolite in aquatic organisms. Environment International, 155, 106705.

COP15. (2022). Decision adopted by the conference of the parties to the convention on biological diversity. 15/4. Kunming-Montreal global biodiversity framework. Convention on Biological Diversity, Montreal, Canada. https://www.cbd.int/doc/decisions/cop-15/cop-15-dec-04-en.pdf

Córdoba-Tovar, L., Marrugo-Negrete, J., Barón, P. R., & Díez, S. (2022). Drivers of biomagnification of Hg, As and Se in aquatic food webs: A review. Environmental Research, 204, 112226.

Cousins, I. T., Goldenman, G., Herzke, D., Lohmann, R., Miller, M., Ng, C. A., Patton, S., Scheringer, M., Trier, X., Vierke, L., Wang, Z., & DeWitt, J. C. (2019). The concept of essential use for determining when uses of PFASs can be phased out. Environmental Science: Processes & Impacts, 21, 1803-1815.

Cousins, I. T., Johansson, J. H., Salter, M. E., Sha, B., & Scheringer, M. (2022). Outside the safe operating space of a new planetary boundary for per- and Polyfluoroalkyl substances (PFAS). Environmental Science & Technology, 56, 11172-11179.

Cousins, I. T., Ng, C. A., Wang, Z., & Scheringer, M. (2019). Why is high persistence alone a major cause of concern? Environmental Science: Processes & Impacts, 21, 781-792.

De Coen, W. M., & Janssen, C. R. (2003). The missing biomarker link: Relationships between effects on the cellular energy allocation biomarker of toxicant-stressed Daphnia magna and corresponding population characteristics. Environmental Toxicology and Chemistry, 22, 1632-1641.

Desforges, J.-P., Hall, A., McConnell, B., Rosing-Asvid, A., Barber, J. L., Brownlow, A., De Guise, S., Eulaers, I., Jepson, P. D., Letcher, R. J., Levin, M., Ross, P. S., Samarra, F., Víkingson, G., Sonne, C., & Dietz, R. (2018). Predicting global killer whale population collapse from PCB pollution. Science, 361, 1373-1376.

Ding, J., Meng, F., Chen, H., Chen, Q., Hu, A., Yu, C.-P., Chen, L., & Lv, M. (2022). Leachable additives of Tire particles explain the shift in microbial community composition and function in coastal sediments. Environmental Science & Technology, 56, 12257-12266.

Dong, H., Cuthbertson, A. A., & Richardson, S. D. (2020). Effect-directed analysis (EDA): A promising tool for nontarget identification of unknown disinfection byproducts in drinking water. Environmental Science & Technology, 54, 1290-1292.

Donovan, M. K., Adam, T. C., Shantz, A. A., Speare, K. E., Munsterman, K. S., Rice, M. M., Schmitt, R. J., Holbrook, S. J., & Burkepile, D. E. (2020). Nitrogen pollution interacts with heat stress to increase coral bleaching across the seascape. Proceedings of the National Academy of Sciences of the United States of America, 117, 5351-5357.

Downs, C. A., Bishop, E., Diaz-Cruz, M. S., Haghshenas, S. A., Stien, D., Rodrigues, A. M. S., Woodley, C. M., Sunyer-Caldú, A., Doust, S. N., Espero, W., Ward, G., Farhangmehr, A., Tabatabaee Samimi, S. M., Risk, M. J., Lebaron, P., & DiNardo, J. C. (2022). Oxybenzone contamination from sunscreen pollution and its ecological threat to Hanauma Bay, Oahu, Hawaii, USA. Chemosphere, 291, 132880.

Driscoll, C. T., Mason, R. P., Chan, H. M., Jacob, D. J., & Pirrone, N. (2013). Mercury as a global pollutant: Sources, pathways, and effects. Environmental Science & Technology, 47, 4967-4983.

Eggen, R. I. L., Hollender, J., Joss, A., Schärer, M., & Stamm, C. (2014). Reducing the discharge of micropollutants in the aquatic environment: The benefits of upgrading wastewater treatment plants. Environmental Science & Technology, 48, 7683-7689.

European Commission (EC). (2020). EU biodiversity strategy for 2030: Bringing nature back into our lives. European Commission. COM(2020)380. https://eur-lex.europa.eu/legal-content/EN/TXT/qid=1590574123338&uri=CELEX:52020DC0380

Evers, D. C., Savoy, L. J., DeSorbo, C. R., Yates, D. E., Hanson, W., Taylor, K. M., Siegel, L. S., Cooley, J. H., Jr., Bank, M. S., Major, A., Munney, K., Mower, B. F., Vogel, H. S., Schoch, N., Pokras, M., Goodale, M. W., & Fair, J. (2008). Adverse effects from environmental mercury loads on breeding common loons. Ecotoxicology, 17, 69-81.

Flores, F., Marques, J. A., Uthicke, S., Fisher, R., Patel, F., Kaserzon, S., & Negri, A. P. (2021). Combined effects of climate change and the herbicide diuron on the coral Acropora millepora. Marine Pollution Bulletin, 169, 112582.

Ford, A. T., Ågerstrand, M., Brooks, B. W., Allen, J., Bertram, M. G., Brodin, T., Dang, Z., Duquesne, S., Sahm, R., Hoffmann, F., Hollert, H., Jacob, S., Klüver, N., Lazorchak, J. M., Ledesma, M., Melvin, S. D., Mohr, S., Padilla, S., Pyle, G. G., … Maack, G. (2021). The role of behavioral ecotoxicology in environmental protection. Environmental Science & Technology, 55, 5620-5628.

Gerson, J. R., Szponar, N., Zambrano, A. A., Bergquist, B., Broadbent, E., Driscoll, C. T., Erkenswick, G., Evers, D. C., Fernandez, L. E., Hsu-Kim, H., Inga, G., Lansdale, K. N., Marchese, M. J., Martinez, A., Moore, C., Pan, W. K., Purizaca, R. P., Sánchez, V., Silman, M., … Bernhardt, E. S. (2022). Amazon forests capture high levels of atmospheric mercury pollution from artisanal gold mining. Nature Communications, 13, 559.

Gessner, M. O., & Tlili, A. (2016). Fostering integration of freshwater ecology with ecotoxicology. Freshwater Biology, 61, 1991-2001.

Gould, K. A. (2015). Slowing the nanotechnology treadmill: Impact science versus production science for sustainable technological development. Environmental Sociology, 1, 143-151.

Green, R. E., Newton, I., Shultz, S., Cunningham, A. A., Gilbert, M., Pain, D. J., & Prakash, V. (2004). Diclofenac poisoning as a cause of vulture population declines across the Indian subcontinent. Journal of Applied Ecology, 41, 793-800.

Grilo, A., Moreira, A., Carrapiço, B., Belas, A., & São Braz, B. (2020). Epidemiological study of pesticide poisoning in domestic animals and wildlife in Portugal: 2014-2020. Frontiers in Veterinary Science, 7, 616293.

Groh, K., vom Berg, C., Schirmer, K., & Tlili, A. (2022). Anthropogenic chemicals As underestimated drivers of biodiversity loss: Scientific and societal implications. Environmental Science & Technology, 56, 707-710.

Groh, K. J., Carvalho, R. N., Chipman, J. K., Denslow, N. D., Halder, M., Murphy, C. A., Roelofs, D., Rolaki, A., Schirmer, K., & Watanabe, K. H. (2015). Development and application of the adverse outcome pathway framework for understanding and predicting chronic toxicity: I. Challenges and research needs in ecotoxicology. Chemosphere, 120, 764-777.

Hamilton, P. B., Rolshausen, G., Uren Webster, T. M., & Tyler, C. R. (2017). Adaptive capabilities and fitness consequences associated with pollution exposure in fish. Philosophical Transactions of the Royal Society B: Biological Sciences, 372, 20160042.

Harfoot, M. B. J., Johnston, A., Balmford, A., Burgess, N. D., Butchart, S. H. M., Dias, M. P., Hazin, C., Hilton-Taylor, C., Hoffmann, M., Isaac, N. J. B., Iversen, L. L., Outhwaite, C. L., Visconti, P., & Geldmann, J. (2021). Using the IUCN red list to map threats to terrestrial vertebrates at global scale. Nature Ecology & Evolution, 5, 1510-1519.

Hébert, M.-P., Fugère, V., Beisner, B. E., Barbosa da Costa, N., Barrett, R. D. H., Bell, G., Shapiro, B. J., Yargeau, V., Gonzalez, A., & Fussmann, G. F. (2021). Widespread agrochemicals differentially affect zooplankton biomass and community structure. Ecological Applications, 31, e02423.

Hladik, M. L., Main, A. R., & Goulson, D. (2018). Environmental risks and challenges associated with neonicotinoid insecticides. Environmental Science & Technology, 52, 3329-3335.

Hoegh-Guldberg, O., Poloczanska, E. S., Skirving, W., & Dove, S. (2017). Coral reef ecosystems under climate change and ocean acidification. Frontiers in Marine Science, 4, 158. https://doi.org/10.3389/fmars.201

Hogue, A. S., & Breon, K. (2022). The greatest threats to species. Conservation Science and Practice, 4, e12670.

Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES). (2019). Global assessment report on biodiversity and ecosystem services of the intergovernmental science-policy platform on biodiversity and ecosystem services. IPBES Secretariat. https://doi.org/10.5281/zenodo.3831673

International Union for Conservation of Nature (IUCN). (2022). The IUCN Red List of Threatened Species. https://iucnredlist.org

Jamieson, A. J., Malkocs, T., Piertney, S. B., Fujii, T., & Zhang, Z. (2017). Bioaccumulation of persistent organic pollutants in the deepest ocean fauna. Nature Ecology & Evolution, 1, 1-4.

Jaureguiberry, P., Titeux, N., Wiemers, M., Bowler, D. E., Coscieme, L., Golden, A. S., Guerra, C. A., Jacob, U., Takahashi, Y., Settele, J., Díaz, S., Molnár, Z., & Purvis, A. (2022). The direct drivers of recent global anthropogenic biodiversity loss. Science Advances, 8, eabm9982.

Joachim, S., Beaudouin, R., Daniele, G., Geffard, A., Bado-Nilles, A., Tebby, C., Palluel, O., Dedourge-Geffard, O., Fieu, M., Bonnard, M., Palos-Ladeiro, M., Turiès, C., Vulliet, E., David, V., Baudoin, P., James, A., Andres, S., & Porcher, J. M. (2021). Effects of diclofenac on sentinel species and aquatic communities in semi-natural conditions. Ecotoxicology and Environmental Safety, 211, 111812.

Karamertzanis, P. G., Atlason, P., Nathanail, A. V., Provoost, J., Karhu, E., & Rasenberg, M. (2019). The impact on classifications for carcinogenicity, mutagenicity, reproductive and specific target organ toxicity after repeated exposure in the first ten years of the REACH regulation. Regulatory Toxicology and Pharmacology, 106, 303-315.

Kelly, E. N., Schindler, D. W., St. Louis, V. L., Donald, D. B., & Vladicka, K. E. (2006). Forest fire increases mercury accumulation by fishes via food web restructuring and increased mercury inputs. Proceedings of the National Academy of Sciences of the United States of America, 103, 19380-19385.

Klingelhöfer, D., Braun, M., Brüggmann, D., & Groneberg, D. A. (2022). Neonicotinoids: A critical assessment of the global research landscape of the most extensively used insecticide. Environmental Research, 213, 113727.

Köhler, H. R., & Triebskorn, R. (2013). Wildlife ecotoxicology of pesticides: Can we track effects to the population level and beyond? Science, 341, 759-765.

Könemann, S., Meyer, S., Betz, A., Županič, A., & Vom Berg, C. (2021). Sub-lethal peak exposure to insecticides triggers olfaction-mediated avoidance in zebrafish larvae. Environmental Science & Technology, 55, 11835-11847.

Krewski, D., Andersen, M. E., Tyshenko, M. G., Krishnan, K., Hartung, T., Boekelheide, K., Wambaugh, J. F., Jones, D., Whelan, M., Thomas, R., Yauk, C., Barton-Maclaren, T., & Cote, I. (2020). Toxicity testing in the 21st century: Progress in the past decade and future perspectives. Archives of Toxicology, 94, 1-58.

Kristiansson, E., Coria, J., Gunnarsson, L., & Gustavsson, M. (2021). Does the scientific knowledge reflect the chemical diversity of environmental pollution?-A twenty-year perspective. Environmental Science & Policy, 126, 90-98.

Kurwadkar, S., Dane, J., Kanel, S. R., Nadagouda, M. N., Cawdrey, R. W., Ambade, B., Struckhoff, G. C., & Wilkin, R. (2022). Per- and polyfluoroalkyl substances in water and wastewater: A critical review of their global occurrence and distribution. Science of The Total Environment, 809, 151003.

Lai, A., Clark, A. M., Escher, B. I., Fernandez, M., McEwen, L. R., Tian, Z., Wang, Z., & Schymanski, E. L. (2022). The next frontier of environmental unknowns: Substances of unknown or variable composition, complex reaction products, or biological materials (UVCBs). Environmental Science & Technology, 56, 7448-7466.

Liess, M., Liebmann, L., Vormeier, P., Weisner, O., Altenburger, R., Borchardt, D., Brack, W., Chatzinotas, A., Escher, B., Foit, K., Gunold, R., Henz, S., Hitzfeld, K. L., Schmitt-Jansen, M., Kamjunke, N., Kaske, O., Knillmann, S., Krauss, M., Küster, E., … Reemtsma, T. (2021). Pesticides are the dominant stressors for vulnerable insects in lowland streams. Water Research, 201, 117262.

Lohmann, R., Breivik, K., Dachs, J., & Muir, D. (2007). Global fate of POPs: Current and future research directions. Environmental Pollution, 150, 150-165.

Main, A. R., Webb, E. B., Goyne, K. W., & Mengel, D. (2018). Neonicotinoid insecticides negatively affect performance measures of non-target terrestrial arthropods: A meta-analysis. Ecological Applications, 28, 1232-1244.

Marlatt, V. L., Bayen, S., Castaneda-Cortès, D., Delbès, G., Grigorova, P., Langlois, V. S., Martyniuk, C. J., Metcalfe, C. D., Parent, L., Rwigemera, A., Thomson, P., & Van Der Kraak, G. (2022). Impacts of endocrine disrupting chemicals on reproduction in wildlife and humans. Environmental Research, 208, 112584.

McIntyre, J. K., Baldwin, D. H., Beauchamp, D. A., & Scholz, N. L. (2012). Low-level copper exposures increase visibility and vulnerability of juvenile coho salmon to cutthroat trout predators. Ecological Applications, 22, 1460-1471.

McKinney, M. A., McMeans, B. C., Tomy, G. T., Rosenberg, B., Ferguson, S. H., Morris, A., Muir, D. C. G., & Fisk, A. T. (2012). Trophic transfer of contaminants in a changing Arctic marine food web: Cumberland sound, Nunavut, Canada. Environmental Science & Technology, 46, 9914-9922.

Michelangeli, M., Martin, J. M., Pinter-Wollman, N., Ioannou, C. C., McCallum, E. S., Bertram, M. G., & Brodin, T. (2022). Predicting the impacts of chemical pollutants on animal groups. Trends in Ecology & Evolution., 37, 789-802.

Millenium Ecosystem Assessment (MEA). (2005). Ecosystems and human well-being: Synthesis. Island Press. https://islandpress.org/author/millennium-ecosystem-assessment

Moreno-Opo, R., Carapeto, R., Casimiro, R., Rubio, C., Muñoz, B., Moreno, I., & Aymerich, M. (2021). The veterinary use of diclofenac and vulture conservation in Spain: Updated evidence and socio-ecological implications. Science of the Total Environment, 796, 148851.

Mueller, L. K., Ågerstrand, M., Backhaus, T., Diamond, M., Erdelen, W., Evers, D., Groh, K., Scheringer, M., Sigmund, G., Wang, Z., & Schäffer, A. (2023). Policy options to account for multiple chemical pollutants threatening biodiversity. Environmental Science: Advances, 2, 151-161.

Muz, M., Escher, B. I., & Jahnke, A. (2020). Bioavailable environmental pollutant patterns in sediments from passive equilibrium sampling. Environmental Science & Technology, 54, 15861-15871.

Nizzetto, L., Macleod, M., Borgå, K., Cabrerizo, A., Dachs, J., Di Guardo, A., Ghirardello, D., Hansen, K. M., Jarvis, A., Lindroth, A., Ludwig, B., Monteith, D., Perlinger, J. A., Scheringer, M., Schwendenmann, L., Semple, K. T., Wick, L. Y., Zhang, G., & Jones, K. C. (2010). Past, present, and future controls on levels of persistent organic pollutants in the global environment. Environmental Science & Technology, 44, 6526-6531.

Ogada, D. L., Keesing, F., & Virani, M. Z. (2012). Dropping dead: Causes and consequences of vulture population declines worldwide. Annals of the New York Academy of Sciences, 1249, 57-71.

Ouédraogo, D.-Y., Sordello, R., Brugneaux, S., Burga, K., Calvayrac, C., Castelin, M., Domart-Coulon, I., Ferrier-Pagès, C., Guillaume, M. M. M., Hédouin, L., Joannot, P., Perceval, O., & Reyjol, Y. (2020). What evidence exists on the impacts of chemicals arising from human activity on tropical reef-building corals? A systematic map protocol. Environmental Evidence, 9, 18.

Persson, L., Carney Almroth, B. M., Collins, C. D., Cornell, S., de Wit, C. A., Diamond, M. L., Fantke, P., Hassellöv, M., MacLeod, M., Ryberg, M. W., Søgaard Jørgensen, P., Villarrubia-Gómez, P., Wang, Z., & Hauschild, M. Z. (2022). Outside the safe operating space of the planetary boundary for novel entities. Environmental Science & Technology, 56, 1510-1521.

Petersen, J. E., & Hastings, A. (2001). Dimensional approaches to scaling experimental ecosystems: Designing mousetraps to catch elephants. The American Naturalist, 157, 324-333.

Pisa, L. W., Amaral-Rogers, V., Belzunces, L. P., Bonmatin, J. M., Downs, C. A., Goulson, D., Kreutzweiser, D. P., Krupke, C., Liess, M., McField, M., Morrissey, C. A., Noome, D. A., Settele, J., Simon-Delso, N., Stark, J. D., Van der Sluijs, J. P., Van Dyck, H., & Wiemers, M. (2015). Effects of neonicotinoids and fipronil on non-target invertebrates. Environmental Science and Pollution Research International, 22, 68-102.

Posthuma, L., Brack, W., van Gils, J., Focks, A., Müller, C., de Zwart, D., & Birk, S. (2019). Mixtures of chemicals are important drivers of impacts on ecological status in European surface waters. Environmental Sciences Europe, 31, 71.

Posthuma, L., van Gils, J., Zijp, M. C., van de Meent, D., & de Zwart, D. (2019). Species sensitivity distributions for use in environmental protection, assessment, and management of aquatic ecosystems for 12 386 chemicals. Environmental Toxicology and Chemistry, 38, 905-917.

Prosnier, L., Loreau, M., & Hulot, F. D. (2015). Modeling the direct and indirect effects of copper on phytoplankton-zooplankton interactions. Aquatic Toxicology, 162, 73-81.

Rillig, M. C., Kim, S. W., Schaeffer, A., Sigmund, G., Groh, K. J., & Wang, Z. (2022). About “controls” in pollution-ecology experiments in the Anthropocene. Environmental Science & Technology, 56, 11928-11930.

Rillig, M. C., Lehmann, A., Orr, J. A., & Waldman, W. R. (2021). Mechanisms underpinning nonadditivity of global change factor effects in the plant-soil system. New Phytologist, 232, 1535-1539.

Rillig, M. C., Ryo, M., Lehmann, A., Aguilar-Trigueros, C. A., Buchert, S., Wulf, A., Iwasaki, A., Roy, J., & Yang, G. (2019). The role of multiple global change factors in driving soil functions and microbial biodiversity. Science, 366, 886-890.

Rockström, J., Beringer, T., Hole, D., Griscom, B., Mascia, M. B., Folke, C., & Creutzig, F. (2021). We need biosphere stewardship that protects carbon sinks and builds resilience. Proceedings of the National Academy of Sciences of the United States of America, 118, e2115218118.

Saaristo, M., Lagesson, A., Bertram, M. G., Fick, J., Klaminder, J., Johnstone, C. P., Wong, B. B. M., & Brodin, T. (2019). Behavioural effects of psychoactive pharmaceutical exposure on European perch (Perca fluviatilis) in a multi-stressor environment. Science of the Total Environment, 655, 1311-1320.

Sánchez-Bayo, F., & Wyckhuys, K. A. G. (2019). Worldwide decline of the entomofauna: A review of its drivers. Biological Conservation, 232, 8-27.

Saouter, E., Biganzoli, F., Pant, R., Sala, S., & Versteeg, D. (2019). Using REACH for the EU environmental footprint: Building a usable Ecotoxicity database, part I. Integrated Environmental Assessment and Management, 15, 783-795.

Schaeffer, A., Amelung, W., Hollert, H., Kaestner, M., Kandeler, E., Kruse, J., Miltner, A., Ottermanns, R., Pagel, H., Peth, S., Poll, C., Rambold, G., Schloter, M., Schulz, S., Streck, T., & Roß-Nickoll, M. (2016). The impact of chemical pollution on the resilience of soils under multiple stresses: A conceptual framework for future research. Science of the Total Environment, 568, 1076-1085.

Schaeffer, A., Fenner, K., Wang, Z., & Scheringer, M. (2022). To be or not to be degraded: In defense of persistence assessment of chemicals. Environmental Science: Processes & Impacts, 24, 1104-1109.

Schaeffer, A., Hollert, H., Ratte, H. T., Ross-Nickoll, M., Filser, J., Matthies, M., Oehlmann, J., Scheringer, M., Schulz, R., & Seitz, A. (2009). An indispensable asset at risk: Merits and needs of chemicals-related environmental sciences. Environmental Science and Pollution Research International, 16, 410-413.

Schäfer, R. B., Liess, M., Altenburger, R., Filser, J., Hollert, H., Roß-Nickoll, M., Schäffer, A., & Scheringer, M. (2019). Future pesticide risk assessment: Narrowing the gap between intention and reality. Environmental Sciences Europe, 31, 21.

Scheringer, M. (2017). Environmental chemistry and ecotoxicology: In greater demand than ever. Environmental Sciences Europe, 29, 3.

Schneeweiss, A., Juvigny-Khenafou, N. P. D., Osakpolor, S., Scharmüller, A., Scheu, S., Schreiner, V. C., Ashauer, R., Escher, B. I., Leese, F., & Schäfer, R. B. (2023). Three perspectives on the prediction of chemical effects in ecosystems. Global Change Biology, 29, 21-40.

Schuijt, L. M., Peng, F.-J., van den Berg, S. J. P., Dingemans, M. M. L., & Van den Brink, P. J. (2021). (eco)toxicological tests for assessing impacts of chemical stress to aquatic ecosystems: Facts, challenges, and future. Science of the Total Environment, 795, 148776.

Schulz, R., Bub, S., Petschick, L. L., Stehle, S., & Wolfram, J. (2021). Applied pesticide toxicity shifts toward plants and invertebrates, even in GM crops. Science, 372, 81-84.

Schwarzenbach, R. P., Gschwend, P. M., & Imboden, D. M. (2002). Environmental organic chemistry. Wiley.

Schymanski, E. L., Jeon, J., Gulde, R., Fenner, K., Ruff, M., Singer, H. P., & Hollender, J. (2014). Identifying small molecules via high resolution mass spectrometry: Communicating confidence. Environmental Science & Technology, 48, 2097-2098.

Secretariats of the Basel M, Rotterdam, Stockholm Conventions (BRS), and the Minamata Convention on Mercury (MC). (2021a). Chemicals, waste and climate change: Interlinkages and potential for coordinated action. United Nations. 2104624 (E). https://wedocs.unep.org/xmlui/handle/20.500.11822/36396

Secretariats of the Basel M, Rotterdam, Stockholm Conventions (BRS), and the Minamata Convention on Mercury (MC). (2021b). Interlinkages between the chemicals and waste multilateral environmental agreements and biodiversity: Key insights. United Nations. 2106227 (E), https://wedocs.unep.org/handle/20.500.11822/36088

Sigmund, G., Ågerstrand, M., Brodin, T., Diamond, M. L., Erdelen, W. R., Evers, D. C., Lai, A., Rillig, M. C., Schaeffer, A., Soehl, A., Torres, J. P. M., Wang, Z., & Groh, K. J. (2022). Broaden chemicals scope in biodiversity targets. Science, 376, 1280.

Sigmund, G., Arp, H. P. H., Aumeier, B. M., Bucheli, T. D., Chefetz, B., Chen, W., Droge, S. T. J., Endo, S., Escher, B. I., Hale, S. E., Hofmann, T., Pignatello, J., Reemtsma, T., Schmidt, T. C., Schönsee, C. D., & Scheringer, M. (2022). Sorption and mobility of charged organic compounds: How to confront and overcome limitations in their assessment. Environmental Science & Technology, 56, 4702-4710.

Silva, V., Mol, H. G. J., Zomer, P., Tienstra, M., Ritsema, C. J., & Geissen, V. (2019). Pesticide residues in European agricultural soils-A hidden reality unfolded. Science of the Total Environment, 653, 1532-1545.

Simon-Delso, N., Amaral-Rogers, V., Belzunces, L. P., Bonmatin, J. M., Chagnon, M., Downs, C., Furlan, L., Gibbons, D. W., Giorio, C., Girolami, V., Goulson, D., Kreutzweiser, D. P., Krupke, C. H., Liess, M., Long, E., McField, M., Mineau, P., Mitchell, E. A., Morrissey, C. A., … Wiemers, M. (2015). Systemic insecticides (neonicotinoids and fipronil): Trends, uses, mode of action and metabolites. Environmental Science and Pollution Research International, 22, 5-34.

Sobek, A., Bejgarn, S., Rudén, C., & Breitholtz, M. (2016). The dilemma in prioritizing chemicals for environmental analysis: Known versus unknown hazards. Environmental Science: Processes & Impacts, 18, 1042-1049.

Stepanian, P. M., Entrekin, S. A., Wainwright, C. E., Mirkovic, D., Tank, J. L., & Kelly, J. F. (2020). Declines in an abundant aquatic insect, the burrowing mayfly, across major north American waterways. Proceedings of the National Academy of Sciences of the United States of America, 117, 2987-2992.

Strempel, S., Scheringer, M., Ng, C. A., & Hungerbühler, K. (2012). Screening for PBT chemicals among the “existing” and “new” chemicals of the EU. Environmental Science & Technology, 46, 5680-5687.

Stubbington, R., Sarremejane, R., Laini, A., Cid, N., Csabai, Z., England, J., Munné, A., Aspin, T., Bonada, N., Bruno, D., Cauvy-Fraunie, S., Chadd, R., Dienstl, C., Fortuño Estrada, P., Graf, W., Gutiérrez-Cánovas, C., House, A., Karaouzas, I., Kazila, E., … Datry, T. (2022). Disentangling responses to natural stressor and human impact gradients in river ecosystems across Europe. Journal of Applied Ecology, 59, 537-548.

Teixeira, D. C., Lacerda, L. D., & Silva-Filho, E. V. (2018). Foliar mercury content from tropical trees and its correlation with physiological parameters in situ. Environmental Pollution, 242, 1050-1057.

Thomsen, P. F., & Willerslev, E. (2015). Environmental DNA-An emerging tool in conservation for monitoring past and present biodiversity. Biological Conservation, 183, 4-18.

Tian, Z., Zhao, H., Peter, K. T., Gonzalez, M., Wetzel, J., Wu, C., Hu, X., Prat, J., Mudrock, E., Hettinger, R., Cortina, A. E., Biswas, R. G., Kock, F. V. C., Soong, R., Jenne, A., Du, B., Hou, F., He, H., Lundeen, R., … Kolodziej, E. P. (2021). A ubiquitous tire rubber-derived chemical induces acute mortality in coho salmon. Science, 371, 185-189.

Triebskorn, R., Adam, S., Casper, H., Honnen, W., Pawert, M., Schramm, M., Schwaiger, J., & Köhler, H.-R. (2002). Biomarkers as diagnostic tools for evaluating effects of unknown past water quality conditions on stream organisms. Ecotoxicology, 11, 451-465.

Tuuri, E. M., & Leterme, S. C. (2023). How plastic debris and associated chemicals impact the marine food web: A review. Environmental Pollution, 321, 121156.

UN Environment Programme (UNEP). (2018). Technical background to the global mercury assessment 2018. Narayana Press. https://www.unep.org/globalmercurypartnership/resources/report/technical-background-report-global-mercury-assessment-2018

United Nations Human Settlements Programme (UN-Habitat) and World Health Organization (WHO). (2021). Progress on wastewater treatment-Global status and acceleration needs for SDG indicator 6.3.1. UN-Habitat and WHO. https://unhabitat.org/progress-on-wastewater-treatment-%E2%80%93-2021-update

van Bruggen, A. H. C., Finckh, M. R., He, M., Ritsema, C. J., Harkes, P., Knuth, D., & Geissen, V. (2021). Indirect effects of the herbicide glyphosate on plant, animal and human health through its effects on microbial communities. Frontiers in Environmental Science, 9, 763917.

van Sebille, E., Wilcox, C., Lebreton, L., Maximenko, N., Hardesty, B. D., van Franeker, J. A., Eriksen, M., Siegel, D., Galgani, F., & Law, K. L. (2015). A global inventory of small floating plastic debris. Environmental Research Letters, 10, 124006.

Wang, Z., DeWitt, J. C., Higgins, C. P., & Cousins, I. T. (2017). A never-ending story of per- and Polyfluoroalkyl substances (PFASs)? Environmental Science & Technology, 51, 2508-2518.

Wang, Z., Walker, G. W., Muir, D. C. G., & Nagatani-Yoshida, K. (2020). Toward a global understanding of chemical pollution: A first comprehensive analysis of national and regional chemical inventories. Environmental Science & Technology, 54, 2575-2584.

Wang, Z., Wiesinger, H., & Groh, K. (2021). Time to reveal chemical identities of polymers and UVCBs. Environmental Science & Technology, 55, 14473-14476.

Watkins, Y. S. D., & Sallach, J. B. (2021). Investigating the exposure and impact of chemical UV filters on coral reef ecosystems: Review and research gap prioritization. Integrated Environmental Assessment and Management, 17, 967-981.

Wear, S. L., & Thurber, R. V. (2015). Sewage pollution: Mitigation is key for coral reef stewardship. Annals of the New York Academy of Sciences, 1355, 15-30.

Weitere, M., Altenburger, R., Anlanger, C., Baborowski, M., Bärlund, I., Beckers, L.-M., Borchardt, D., Brack, W., Brase, L., Busch, W., Chatzinotas, A., Deutschmann, B., Eligehausen, J., Frank, K., Graeber, D., Griebler, C., Hagemann, J., Herzsprung, P., Hollert, H., … Brauns, M. (2021). Disentangling multiple chemical and non-chemical stressors in a lotic ecosystem using a longitudinal approach. Science of the Total Environment, 769, 144324.

Wells, F. E., & Gagnon, M. M. (2020). A quarter century of recovery of the whelk Thais orbita from tributyltin pollution off Perth, Western Australia. Marine Pollution Bulletin, 158, 111408.

Wernersson, A.-S., Carere, M., Maggi, C., Tusil, P., Soldan, P., James, A., Sanchez, W., Dulio, V., Broeg, K., Reifferscheid, G., Buchinger, S., Maas, H., Van Der Grinten, E., O'Toole, S., Ausili, A., Manfra, L., Marziali, L., Polesello, S., Lacchetti, I., … Kase, R. (2015). The European technical report on aquatic effect-based monitoring tools under the water framework directive. Environmental Sciences Europe, 27, 7.

Wilkinson, J. L., Boxall, A. B. A., Kolpin, D. W., Leung, K. M. Y., Lai, R. W. S., Galbán-Malagón, C., Adell, A. D., Mondon, J., Metian, M., Marchant, R. A., Bouzas-Monroy, A., Cuni-Sanchez, A., Coors, A., Carriquiriborde, P., Rojo, M., Gordon, C., Cara, M., Moermond, M., Luarte, T., … Teta, C. (2022). Pharmaceutical pollution of the world's rivers. Proceedings of the National Academy of Sciences of the United States of America, 119, e2113947119.

Wilkinson, M. D., Dumontier, M., Aalbersberg, I. J., Appleton, G., Axton, M., Baak, A., Blomberg, N., Boiten, J.-W., da Silva Santos, L. B., Bourne, P. E., Bouwman, J., Brookes, A. J., Clark, T., Crosas, M., Dillo, I., Dumon, O., Edmunds, S., Evelo, C. T., Finkers, R., … Mons, B. (2016). The FAIR guiding principles for scientific data management and stewardship. Scientific Data, 3, 160018.

Wu, X., Zhou, Q., Mu, L., & Hu, X. (2022). Machine learning in the identification, prediction and exploration of environmental toxicology: Challenges and perspectives. Journal of Hazardous Materials, 438, 129487.

Yamamuro, M., Komuro, T., Kamiya, H., Kato, T., Hasegawa, H., & Kameda, Y. (2019). Neonicotinoids disrupt aquatic food webs and decrease fishery yields. Science, 366, 620-623.

Yule, C. M., Boyero, L., & Marchant, R. (2010). Effects of sediment pollution on food webs in a tropical river (Borneo, Indonesia). Marine and Freshwater Research, 61, 204-213.

Zandalinas, S. I., Fritschi, F. B., & Mittler, R. (2021). Global warming, climate change, and environmental pollution: Recipe for a multifactorial stress combination disaster. Trends in Plant Science, 26, 588-599.

Zhu, H., Zhang, J., Kim, M. T., Boison, A., Sedykh, A., & Moran, K. (2014). Big data in chemical toxicity research: The use of high-throughput screening assays to identify potential toxicants. Chemical Research in Toxicology, 27, 1643-1651.

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Psychoactive pollutant alters movement dynamics of fish in a natural lake system

. 2024 Dec ; 291 (2036) : 20241760. [epub] 20241211

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...