"Form follows function": the developmental morphology of the cardiac atria
Jazyk angličtina Země Česko Médium print
Typ dokumentu časopisecké články, přehledy
PubMed
39808172
PubMed Central
PMC11827060
DOI
10.33549/physiolres.935503
PII: 935503
Knihovny.cz E-zdroje
- MeSH
- fibrilace síní patofyziologie patologie MeSH
- lidé MeSH
- převodní systém srdeční patofyziologie MeSH
- srdce - funkce síní fyziologie MeSH
- srdeční síně * MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Although the heart atria have a lesser functional importance than the ventricles, atria play an important role in the pathophysiology of heart failure and supraventricular arrhythmias, particularly atrial fibrillation. In addition, knowledge of atrial morphology recently became more relevant as cardiac electrophysiology and interventional procedures in the atria gained an increasingly significant role in the clinical management of patients with heart disease. The atrial chambers are thin-walled, and several vessels enter at the level of the atria. The left and right atrium have different structures and shape. In general, both atrial chambers have the venous part, the appendage, and the vestibule; different aspects of each part allow us to distinguish morphologically between the left and right atrium. The human atrial conduction system consists of the sinus node and the atrioventricular node with no histologically specialized conduction pathways in the atrial chamber and an interatrial connection. The data show that the propagation of the impulse depends mainly on the myocardial architecture in the atria and the orientation of the myocytes plays a significant role in conduction. To complete the picture, it is also important to know how the atria develop and what is the embryonic origin of its different structures, as this may play a role in the development of some pathological conditions such as atrial fibrillation or certain types of congenital heart defects. Functional impairment of the atria can in some situations severely compromise heart pumping function, and conversely, can support it if other areas are damaged, balancing the blood flow to the body for some time. Key words Morphology of atrial chambers, Pectinate muscles, Atrial function.
Zobrazit více v PubMed
Sedmera D, Pexieder T, Vuillemin M, Thompson RP, Anderson RH. Developmental Patterning of the Myocardium. Anat Rec. 2000;258:319–337. doi: 10.1002/(SICI)1097-0185(20000401)258:4<319::AID-AR1>3.0.CO;2-O. PubMed DOI
Siddiqui AU, Daimi SRH, Gandhi KR, Siddiqui AT, Trivedi S, Sinha MB, Rsathor M. Crista Terminalis, Musculi Pectinati, and Taenia Sagittalis: Anatomical Observations and Applied Significance. ISRN Anat. 2013;2013:803853. doi: 10.5402/2013/803853. PubMed DOI PMC
Anderson RH, Cook AC. The structure and components of the atrial chambers. Europace. 2007;9(Suppl 6):vi3–vi9. doi: 10.1093/europace/eum200. PubMed DOI
McAlpine WA. Heart and Coronary Arteries : An Anatomical Atlas for Clinical Diagnosis, Radiological Investigation, and Surgical Treatment. Berlin: Springer-Verlag; 1975. p. 224. DOI
Ho SY, Sánchez-Quintana D. The importance of atrial structure and fibers. Clin Anat. 2009;22:52–63. doi: 10.1002/ca.20634. PubMed DOI
Loukas M, Tubbs RS, Tongson JM, Polepalli S, Curry B, Jordan R, Wagner T. The clinical anatomy of the crista terminalis, pectinate muscles and the teniae sagittalis. Ann Anat. 2008;190:81–87. doi: 10.1016/j.aanat.2007.05.002. PubMed DOI
Faber JW, Hagoort J, Moorman AFM, Christoffels VM, Jensen B. Quantified growth of the human embryonic heart. Biol Open. 2021;10:bio057059. doi: 10.1242/bio.057059. PubMed DOI PMC
Sullivan LH. The Tall Office Building Artistically Considered. Lippincot’s Mag. 1896;57:403–409.
Sánchez-Quintana D, Anderson RH, Cabrera JA, Climent V, Martin R, Farré J. The terminal crest: morphological features relevant to electrophysiology. Heart. 2002;88:406–411. doi: 10.1136/heart.88.4.406. PubMed DOI PMC
Zoppo F, Rizzo S, Corrado A, Bertaglia E, Buja G, Thiene G, Basso C. Morphology of right atrial appendage for permanent atrial pacing and risk of iatrogenic perforation of the aorta by active fixation lead. Heart Rhythm. 2015;12:744–750. doi: 10.1016/j.hrthm.2014.12.023. PubMed DOI
Rissi R, Marques MJ, Neto HS. Checking the shape and lobation of the right atrial appendage in view of their clinical relevance. Anat Sci Int. 2019;94:324–329. doi: 10.1007/s12565-019-00489-z. PubMed DOI
Zhang J, Yuan M. Anatomy of the right atrial appendage and its importance in clinical practice. Folia Morphol (Warsz) 2023;83:294–299. doi: 10.5603/FM.a2023.0047. PubMed DOI
Barbero U, Ho SY. Anatomie der Vorhöfe: Ein Übersichtsplan für das linke Herzohr. Herzschrittmacherther Elektrophysiol. 2017;28:347–354. doi: 10.1007/s00399-017-0535-x. PubMed DOI PMC
Hołda MK, Klimek-Piotrowska W, Koziej M, Mazur M. Anatomical variations of the coronary sinus valve (Thebesian valve): Implications for electrocardiological procedures. Europace. 2015;17:921–927. doi: 10.1093/europace/euu397. PubMed DOI
Kucybała I, Ciuk K, Klimek-Piotrowska W. Clinical anatomy of human heart atria and interatrial septum - Anatomical basis for interventional cardiologists and electrocardiologists. Part 1: Right atrium and interatrial septum. Kardiol Pol. 2018;76:499–509. doi: 10.5603/KP.a2017.0248. PubMed DOI
Ciuk S, Janas P, Klimek-Piotrowska W. Clinical anatomy of human heart atria and interatrial septum - Anatomical basis for interventional cardiologists and electrocardiologists. Part 2: Left atrium. Kardiol Pol. 2018;76:510–519. doi: 10.5603/KP.a2018.0001. PubMed DOI
Anselmino M, Blandino A, Beninati S, Rovera C, Boffano C, Belletti M, Caponi D, et al. Morphologic analysis of left atrial anatomy by magnetic resonance angiography in patients with atrial fibrillation: A large single center experience. J Cardiovasc Electrophysiol. 2011;22:1–7. doi: 10.1111/j.1540-8167.2010.01853.x. PubMed DOI
Nakib A, Moller JH, Kanjuh VI, Edwards JE. Anomalies of the pulmonary veins. Am J Cardiol. 1967;20:77–90. doi: 10.1016/0002-9149(67)90113-0. PubMed DOI
Kamiński R, Kosiński A, Brala M, Piwko G, Lewicka E, Dąbrowska-Kugacka A, Raczak G, et al. Variability of the Left Atrial Appendage in Human Hearts. PLoS One. 2015;10:e0141901. doi: 10.1371/journal.pone.0141901. PubMed DOI PMC
Di Biase L, Santangeli P, Anselmino M, Mohanty P, Salvetti I, Gili S, Horton R, et al. Does the left atrial appendage morphology correlate with the risk of stroke in patients with atrial fibrillation? Results from a multicenter study. J Am Coll Cardiol. 2012;60:531–538. doi: 10.1016/j.jacc.2012.04.032. PubMed DOI
Kornej J, Börschel CS, Benjamin EJ, Schnabel RB. Epidemiology of Atrial Fibrillation in the 21st Century: Novel Methods and New Insights. Circ Res. 2020;127:4–20. doi: 10.1161/CIRCRESAHA.120.316340. PubMed DOI PMC
Yen Ho S, Angel Cabrera J, Sanchez-Quintana D. Left atrial anatomy revisited. Circ Arrhythm Electrophysiol. 2012;5:220–228. doi: 10.1161/CIRCEP.111.962720. PubMed DOI
Hołda MK, Koziej M, Hołda J, Tyrak K, Piątek K, Bolechała F, Klimek-Piotrowska W. Anatomic characteristics of the mitral isthmus region: The left atrial appendage isthmus as a possible ablation target. Ann Anat. 2017;210:103–111. doi: 10.1016/j.aanat.2016.11.011. PubMed DOI
Anderson RH, Webb S, Brown NA. Clinical anatomy of the atrial septum with reference to its developmental components. Clin Anat. 1999;12:362–374. doi: 10.1002/(SICI)1098-2353(1999)12:5<362::AID-CA6>3.0.CO;2-F. PubMed DOI
Meissner I, Whisnant JP, Khandheria BK, Spittell PC, Michael O’Fallon W, Pascoe RD, Enriquez-Sarano M, et al. Prevalence of potential risk factors for stroke assessed by transesophageal echocardiography and carotid ultrasonography: the SPARC study. Stroke Prevention: Assessment of Risk in a Community. Mayo Clin Proc. 1999;74:862–869. doi: 10.4065/74.9.862. PubMed DOI
Hagen PT, Scholz DG, Edwards WD. Incidence and Size of Patent Foramen Ovale During the First 10 Decades of Life: An Autopsy Study of 965 Normal Hearts. Mayo Clin Proc. 1984;59:17–20. doi: 10.1016/S0025-6196(12)60336-X. PubMed DOI
Breithardt O-A, Papavassiliu T, Borggrefe M. A coronary embolus originating from the interatrial septum. Eur Heart J. 2006;27:2745–2745. doi: 10.1093/eurheartj/ehl051. PubMed DOI
Krishnan SC, Salazar M. Septal pouch in the left atrium: a new anatomical entity with potential for embolic complications. JACC Cardiovasc Interv. 2010;3:98–104. doi: 10.1016/j.jcin.2009.07.017. PubMed DOI
Hołda MK, Koziej M, Hołda J, Piątek K, Tyrak K, Chołopiak W, Bolechała F, et al. Atrial septal pouch - Morphological features and clinical considerations. Int J Cardiol. 2016;220:337–342. doi: 10.1016/j.ijcard.2016.06.141. PubMed DOI
Hołda MK, Koziej M, Wszołek K, Pawlik W, Krawczyk-Ożóg A, Sorysz D, Łoboda P, et al. Left atrial accessory appendages, diverticula, and left-sided septal pouch in multi-slice computed tomography. Association with atrial fibrillation and cerebrovascular accidents. Int J Cardiol. 2017;244:163–168. doi: 10.1016/j.ijcard.2017.06.042. PubMed DOI
De Bold AJ, Borenstein HB, Veress AT, Sonnenberg H. A rapid and potent natriuretic response to intravenous injection of atrial myocardial extract in rats. Life Sci. 1981;28:89–94. doi: 10.1016/0024-3205(81)90370-2. PubMed DOI
Haïssaguerre M, Jaïs P, Shah DC, Takahashi A, Hocini M, Quiniou G, Garrigue S, et al. Spontaneous initiation of atrial fibrillation by ectopic beats originating in the pulmonary veins. N Engl J Med. 1998;339:659–666. doi: 10.1056/NEJM199809033391003. PubMed DOI
Kholová I, Kautzner J. Morphology of atrial myocardial extensions into human caval veins: A postmortem study in patients with and without atrial fibrillation. Circulation. 2004;110:483–488. doi: 10.1161/01.CIR.0000137117.87589.88. PubMed DOI
Aldhoon B, Melenovský V, Peichl P, Kautzner J. New insights into mechanisms of atrial fibrillation. Physiol Res. 2010;59:1–12. doi: 10.33549/physiolres.931651. PubMed DOI
Ho SY, Anderson RH, Sánchez-Quintana D. Gross structure of the atriums: More than an anatomic curiosity? Pacing Clin Electrophysiol. 2002;25:342–350. doi: 10.1046/j.1460-9592.2002.00342.x. PubMed DOI
Guo Z-G, Levi R, Aaronson LM, Gay WA. The isolated human pectinate muscle: a reliable preparation of human cardiac tissue. J Pharmacol Methods. 1983;9:127–135. doi: 10.1016/0160-5402(83)90004-9. PubMed DOI
Ho SY, Anderson RH, Sánchez-Quintana D. Atrial structure and fibres: morphologic bases of atrial conduction. Cardiovasc Res. 2002;54:325–336. doi: 10.1016/S0008-6363(02)00226-2. PubMed DOI
Albu M, Affolter E, Gentile A, Xu Y, Kikhi K, Howard S, Kuenne C, et al. Distinct mechanisms regulate ventricular and atrial chamber wall formation. Nat Commun. 2024;15:8159. doi: 10.1038/s41467-024-52340-3. PubMed DOI PMC
Ernst G, Stöllberger C, Abzieher F, Veit-Dirscherl W, Bonner E, Bibus B, Schneider B, Slany J. Morphology of the left atrial appendage. Anat Rec. 1995;242:553–561. doi: 10.1002/ar.1092420411. PubMed DOI
Shirani J, Alaeddini J. Structural remodeling of the left atrial appendage in patients with chronic non-valvular atrial fibrillation: Implications for thrombus formation, systemic embolism, and assessment by transesophageal echocardiography. Cardiovasc Pathol. 2000;9:95–101. doi: 10.1016/S1054-8807(00)00030-2. PubMed DOI
Kvasilova A, Gregorovicova M, Olejnickova V, Kolesova H, Sedmera D. Myocardial development in crocodylians. Dev Dyn. 2022;251:2029–2047. doi: 10.1002/dvdy.527. PubMed DOI
Mönckeberg JG. Beitrage zur normalen und pathologischen Anatomie des Herzens. Verh Dtsch Pathol Ges. 1910:64–71.
Aschoff L. Referat uber die Herzstorungen in ihren Beziehungen zu den Spezifischen Muskelsystem des Herzens. Verh Dtsch Pathol Ges. 1910:3–35.
Anderson RH, Ho SY. The Architecture of the Sinus Node, the Atrioventricuiar Conduction Axis, and the Internodal Atrial Myocardium. J Cardiovasc Electrophysiol. 1998;9:1233–1248. doi: 10.1111/j.1540-8167.1998.tb00097.x. PubMed DOI
James TN, Sherf L. Specialized tissues and preferential conduction in the atria of the heart. Am J Cardiol. 1971;28:414–427. doi: 10.1016/0002-9149(71)90005-1. PubMed DOI
Durrer D, Van Dam RT, Freud GE, Janse MJ, Meijler FL, Arzbaecher RC. Total excitation of the isolated human heart. Circulation. 1970;41:899–912. doi: 10.1161/01.CIR.41.6.899. PubMed DOI
Ariyarajah V, Spodick DH. The Bachmann Bundle and interatrial conduction. Cardiol Rev. 2006;14:194–199. doi: 10.1097/01.crd.0000195221.26979.2b. PubMed DOI
Kent A. Researches on the Structure and Function of the Mammalian Heart. J Physiol. 1893;14:i2–254. doi: 10.1113/jphysiol.1893.sp000451. PubMed DOI PMC
Moorman AFM, Christoffels VM. Cardiac Chamber Formation: Development, Genes, and Evolution. Physiol Rev. 2003;83:1223–1267. doi: 10.1152/physrev.00006.2003. PubMed DOI
Percy LR, Potter IC. Description of the heart and associated blood vessels in larval lampreys. J Zool. 1986;208:479–492. doi: 10.1111/j.1469-7998.1986.tb01517.x. DOI
Icardo JM. Conus arteriosus of the teleost heart: Dismissed, but not missed. Anat Rec A Discov Mol Cell Evol Biol. 2006;288:900–908. doi: 10.1002/ar.a.20361. PubMed DOI
Johansen K, Hanson D. Functional Anatomy of the Hearts of Lungfishes and Amphibians. Am Zool. 1968;8:191–210. doi: 10.1093/icb/8.2.191. PubMed DOI
Olejnickova V, Kolesova H, Bartos M, Sedmera D, Gregorovicova M. The Tale-Tell Heart: Evolutionary tetrapod shift from aquatic to terrestrial life-style reflected in heart changes in axolotl (Ambystoma mexicanum) Dev Dyn. 2022;251:1004–1014. doi: 10.1002/dvdy.413. PubMed DOI
Modesto SP, Anderson JS. The phylogenetic definition of reptilia. Syst Biol. 2004;53:815–821. doi: 10.1080/10635150490503026. PubMed DOI
Gregorovicova M, Bartos M, Jensen B, Janacek J, Minne B, Moravec J, Sedmera D. Anguimorpha as a model group for studying the comparative heart morphology among Lepidosauria: Evolutionary window on the ventricular septation. Ecol Evol. 2022;12:e9476. doi: 10.1002/ece3.9476. PubMed DOI PMC
Gregorovicova M, Sedmera D, Jensen B. Relative position of the atrioventricular canal determines the electrical activation of developing reptile ventricles. J Exp Biol. 2018;221:jeb178400. doi: 10.1242/jeb.178400. PubMed DOI
Jensen B, Moorman AFM, Wang T. Structure and function of the hearts of lizards and snakes. Biol Rev Camb Philos Soc. 2014;89:302–336. doi: 10.1111/brv.12056. PubMed DOI
Seufer H, Kaverkin Y, Kirschner A, Boone J, Ernst T, Holfert T. The Eyelash Geckos: Care, Breeding and Natural History. Kirschner & Seufer; 2005. p. 238.
Köhler G, Griesshammer K, Schuster N. Bartagamen: Biologie, Pflege, Zucht, Erkrankungen, Zuchtformen. Herpeton; 2013. p. 256.
Pyron R, Burbrink FT, Wiens JJ. A phylogeny and revised classification of Squamata, including 4161 species of lizards and snakes. BMC Evol Biol. 2013;13:93. doi: 10.1186/1471-2148-13-93. PubMed DOI PMC
Jensen B, Nyengaard JR, Pedersen M, Wang T. Anatomy of the python heart. Anat Sci Int. 2010;85:194–203. doi: 10.1007/s12565-010-0079-1. PubMed DOI
Hanemaaijer J, Gregorovicova M, Nielsen JM, Moorman AFM, Wang T, Nils Planken R, Christoffels VM, et al. Identification of the building blocks of ventricular septation in monitor lizards (Varanidae) Development. 2019;146:dev177121. doi: 10.1242/dev.177121. PubMed DOI
Lee MSY. The phylogeny of varanoid lizards and the affinities of snakes. Philos Trans R Soc Lond B Biol Sci. 1997;352:53–91. doi: 10.1098/rstb.1997.0005. DOI
Simões TR, Pyron RA. The squamate tree of life. Bull Museum Compar Zool. 2021;163:47–95. doi: 10.3099/0027-4100-163.2.47. DOI
Jensen B, Christoffels VM. Reptiles as a Model System to Study Heart Development. Cold Spring Harb Perspect Biol. 2020;12:a037226. doi: 10.1101/cshperspect.a037143. PubMed DOI PMC
Poelmann RE, Gittenberger-de Groot AC. Development and evolution of the metazoan heart. Dev Dyn. 2019;248:634–656. doi: 10.1002/dvdy.45. PubMed DOI PMC
Burggren WW, Christoffels VM, Crossley DA, Enok S, Farrell AP, Hedrick MS, Hicks JW, et al. Comparative cardiovascular physiology: Future trends, opportunities and challenges. Acta Physiol (Oxf) 2014;210:257–276. doi: 10.1111/apha.12170. PubMed DOI
Field DJ, Gauthier JA, King BL, Pisani D, Lyson TR, Peterson KJ. Toward consilience in reptile phylogeny: miRNAs support an archosaur, not lepidosaur, affinity for turtles. Evol Dev. 2014;16:189–196. doi: 10.1111/ede.12081. PubMed DOI PMC
Kvasilova A, Olejnickova V, Jensen B, Christoffels VM, Kolesova H, Sedmera D, Gregorovicova M. The formation of the atrioventricular conduction axis is linked in development to ventricular septation. J Exp Biol. 2020;223:jeb229278. doi: 10.1242/jeb.229278. PubMed DOI
Grigg G, Nowack J, Bicudo JEPW, Bal NC, Woodward HN, Seymour RS. Whole-body endothermy: ancient, homologous and widespread among the ancestors of mammals, birds and crocodylians. Biol Rev Camb Philos Soc. 2022;97:766–801. doi: 10.1111/brv.12822. PubMed DOI PMC
Brochu CA. Progress and Future Directions in Archosaur Phylogenetics. J Paleontol. 2001;75:1485–1201. doi: 10.1666/0022-3360(2001)075<1185:PAFDIA>2.0.CO;2. DOI
Rowe T, McBride EF, Sereno PC. Dinosaur with a Heart of Stone. Science. 2001;291:783. doi: 10.1126/science.291.5505.783a. PubMed DOI
Quick DE, Ruben JA. Cardio-pulmonary anatomy in theropod dinosaurs: Implications from extant archosaurs. J Morphol. 2009;270:1232–1246. doi: 10.1002/jmor.10752. PubMed DOI
Seymour RS, Bennett-Stamper CL, Johnston SD, Carrier DR, Grigg GC. Evidence for Endothermic Ancestors of Crocodiles at the Stem of Archosaur Evolution. Physiol Biochem Zool. 2004;77:1051–1067. doi: 10.1086/422766. PubMed DOI
Jensen B, Boukens BJD, Wang T, Moorman AFM, Christoffels VM. Evolution of the Sinus Venosus from Fish to Human. J Cardiovasc Dev Dis. 2014;1:14–28. doi: 10.3390/jcdd1010014. DOI
Zhou Y, Shearwin-Whyatt L, Li J, Song Z, Hayakawa T, Stevens D, Fenelon JC, et al. Platypus and echidna genomes reveal mammalian biology and evolution. Nature. 2021;592:756–762. doi: 10.1038/s41586-020-03039-0. PubMed DOI PMC
Faber JW, Boukens BJ, Oostra RJ, Moorman AFM, Christoffels VM, Jensen B. Sinus venosus incorporation: contentious issues and operational criteria for developmental and evolutionary studies. J Anat. 2019;234:583–591. doi: 10.1111/joa.12962. PubMed DOI PMC
Sadler TW, Langman J. Langman’s Medical Embryology. Lippincott Williams & Wilkins; 2022.
Kardong KV. Vertebrates: Comparative Anatomy, Function, Evolution. Sixth Edition. McGraw-Hill Companies; 2012.
Moorman AFM, De Jong F, Denyn MFJ, Lamers WH, Moorman FM. Development of the Cardiac Conduction System. Circ Res. 1998;82:629–644. doi: 10.1161/01.RES.82.6.629. PubMed DOI
Anderson RH, Brown NA, Moorman AFM. Development and structures of the venous pole of the heart. Dev Dyn. 2006;235:2–9. doi: 10.1002/dvdy.20578. PubMed DOI
Webb S, Brown NA, Anderson RH, Richardson MK. Relationship in the chick of the developing pulmonary vein to the embryonic systemic venous sinus. Anat Rec. 2000;259:67–75. doi: 10.1002/(SICI)1097-0185(20000501)259:1<67::AID-AR8>3.0.CO;2-5. PubMed DOI
Naqvi N, McCarthy KP, Ho SY. Anatomy of the atrial septum and interatrial communications. J Thorac Dis. 2018;10(Suppl 24):S2837–S2847. doi: 10.21037/jtd.2018.02.18. PubMed DOI PMC
Yagel S, Kivilevitch Z, Cohen SM, Valsky D V, Messing B, Shen O, Achiron R. The fetal venous system, Part I: Normal embryology, anatomy, hemodynamics, ultrasound evaluation and Doppler investigation. Ultrasound Obstet Gynecol. 2010;35:741–750. doi: 10.1002/uog.7618. PubMed DOI
Blom NA, Gittenberger-De Groot AC, Jongeneel TH, DeRuiter MC, Poelmann RE, Ottenkamp J. Normal development of the pulmonary veins in human embryos and formulation of a morphogenetic concept for sinus venosus defects. Am J Cardiol. 2001;87:305–309. doi: 10.1016/S0002-9149(00)01363-1. PubMed DOI
Webb S, Brown NA, Wessels A, Anderson RH. Development of the murine pulmonary vein and its relationship to the embryonic venous sinus. Anat Rec. 1998;250:325–334. doi: 10.1002/(SICI)1097-0185(199803)250:3<325::AID-AR7>3.0.CO;2-Z. PubMed DOI
Lamers WH, Moorman AFM. Cardiac septation: A late contribution of the embryonic primary myocardium to heart morphogenesis. Circ Res. 2002;91:93–103. doi: 10.1161/01.RES.0000027135.63141.89. PubMed DOI
Chaldoupi SM, Loh P, Hauer RNW, De Bakker JMT, Van Rijen HVM. The role of connexin40 in atrial fibrillation. Cardiovasc Res. 2009;84:15–23. doi: 10.1093/cvr/cvp203. PubMed DOI
Gaynor SL, Maniar HS, Prasad SM, Steendijk P, Moon MR. Reservoir and conduit function of right atrium: impact on right ventricular filling and cardiac output. Am J Physiol Heart Circ Physiol. 2005;288:H2140–H2145. doi: 10.1152/ajpheart.00566.2004. PubMed DOI
Thomas L. Assessment of Atrial Function. Heart Lung Circ. 2007;16:234–242. doi: 10.1016/j.hlc.2007.03.009. PubMed DOI
Barbier P, Solomon SB, Schiller NB, Glantz SA. Left atrial relaxation and left ventricular systolic function determine left atrial reservoir function. Circulation. 1999;100:427–436. doi: 10.1161/01.CIR.100.4.427. PubMed DOI
Namana V, Gupta SS, Sabharwal N, Hollander G. Clinical significance of atrial kick. QJM. 2018;111:569–570. doi: 10.1093/qjmed/hcy088. PubMed DOI
Prinzen FW, Auricchio A, Mullens W, Linde C, Huizar JF. Electrical management of heart failure: from pathophysiology to treatment. Eur Heart J. 2022;43:1917–1927. doi: 10.1093/eurheartj/ehac088. PubMed DOI PMC
Koizumi R, Funamoto K, Hayase T, Kanke Y, Shibata M, Shiraishi Y, Yanbe T. Numerical analysis of hemodynamic changes in the left atrium due to atrial fibrillation. J Biomech. 2015;48:472–478. doi: 10.1016/j.jbiomech.2014.12.025. PubMed DOI
Goyal A, Basit H, Bhyan P, Sharma S. A Wave [Internet] Treasure Island (FL): StatPearls; 2023. [cited 2024 Apr 17]. Available from: https://www.ncbi.nlm.nih.gov/books/NBK499925/
Janoušek J, Vojtovič P, Chaloupecký V, Hučín B, Tláskal T, Kostelka M, Reich O. Hemodynamically optimized temporary cardiac pacing after surgery for congenital heart defects. Pacing Clin Electrophysiol. 2000;23:1250–1259. doi: 10.1111/j.1540-8159.2000.tb00939.x. PubMed DOI
Zipes DP, Libby P, Bonow RO, Mann DL, Tomaselli GF. Braunwald’s Heart Disease: A Textbook of Cardiovascular Medicine. 8th Edition. Elsevier Science; 2008.
Bainbridge FA. The influence of venous filling upon the rate of the heart. J Physiol. 1915;50:65–84. doi: 10.1113/jphysiol.1915.sp001736. PubMed DOI PMC
Sun BJ, Jae-Hyeong P. Echocardiographic Measurement of Left Atrial Strain. Circ J. 2022;86:6–13. doi: 10.1253/circj.CJ-21-0373. PubMed DOI
Meng X, Li Y, Li H, Wang Y, Zhu W, Lu X. Right atrial function in patients with pulmonary hypertension: A study with two-dimensional speckle-tracking echocardiography. Int J Cardiol. 2018;255:200–205. doi: 10.1016/j.ijcard.2017.11.093. PubMed DOI
Motshabi-Chakane P. Cardiovascular pressure-volume loops. South Afr J Anaesth Analg. 2023;29(5 Suppl 1):S1–S5.
Weimar T, Watanabe Y, Kazui T, Lee US, Moon MR, Schuessler RB, Damiano RJ., Jr Differential impact of short periods of rapid atrial pacing on left and right atrial mechanical function. J Physiol Heart Circ Physiol. 2012;302:H2583–H2591. doi: 10.1152/ajpheart.01170.2011. PubMed DOI PMC
Smorodinova N, Bláha M, Melenovský V, Rozsívalová K, Přidal J, Ďurišová M, Pirk J, et al. Analysis of immune cell populations in atrial myocardium of patients with atrial fibrillation or sinus rhythm. PLoS One. 2017;12:e0172691. doi: 10.1371/journal.pone.0172691. PubMed DOI PMC
Smorodinova N, Lantová L, Bláha M, Melenovský V, Hanzelka J, Pirk J, Kautzner J, Kučera T. Bioptic Study of Left and Right Atrial Interstitium in Cardiac Patients with and without Atrial Fibrillation: Interatrial but Not Rhythm-Based Differences. PLoS One. 2015;10:e0129124. doi: 10.1371/journal.pone.0129124. PubMed DOI PMC
Aldhoon B, Kučera T, Smorodinová N, Martínek J, Melenovský V, Kautzner J. Associations between cardiac fibrosis and permanent atrial fibrillation in advanced heart failure. Physiol Res. 2013;62:247–255. doi: 10.33549/physiolres.932409. PubMed DOI
de Campos MCAV, Moraes VRY, Daher RF, Micheleto JPC, de Campos LAV, Barros GFA, de Oliveira HM, et al. Pulsed-field ablation versus thermal ablation for atrial fibrillation: A meta-analysis. Heart Rhythm O2. 2024;5:385–395. doi: 10.1016/j.hroo.2024.04.012. PubMed DOI PMC
Brundel BJJM, Ai X, Hills MT, Kuipers MF, Lip GYH, de Groot NMS. Atrial fibrillation. Nat Rev Dis Primers. 2022;8:21. doi: 10.1038/s41572-022-00347-9. PubMed DOI
Stojadinovic P, Wichterle D, Fukunaga M, Peichl P, Melenovsky V, Franekova J, Kautzner J, Sramko M. Acute Effect of Atrial Fibrillation on Circulating Natriuretic Peptides: The Influence of Heart Rate, Rhythm Irregularity, and Left Atrial Pressure Overload. Am J Cardiol. 2023;208:156–163. doi: 10.1016/j.amjcard.2023.09.060. PubMed DOI
Melenovsky V, Hwang SJ, Redfield MM, Zakeri R, Lin G, Borlaug BA. Left Atrial Remodeling and Function in Advanced Heart Failure With Preserved or Reduced Ejection Fraction. Circ Heart Fail. 2015;8:295–303. doi: 10.1161/CIRCHEARTFAILURE.114.001667. PubMed DOI
Melenovsky V, Borlaug BA, Rosen B, Hay I, Ferruci L, Morell CH, Lakatta EG, et al. Cardiovascular features of heart failure with preserved ejection fraction versus nonfailing hypertensive left ventricular hypertrophy in the urban Baltimore community: the role of atrial remodeling/dysfunction. J Am Coll Cardiol. 2007;49:198–207. doi: 10.1016/j.jacc.2006.08.050. PubMed DOI
Omote K, Sorimachi H, Obokata M, Verbrugge FH, Omar M, Popovic D, Reddy YNV, et al. Biatrial myopathy in heart failure with preserved ejection fraction. Eur J Heart Fail. 2024;26:288–298. doi: 10.1002/ejhf.3104. PubMed DOI
Ameri P, Mercurio V, Pollesello P, Anker MS, Backs J, Bayes-Genis A, Borlaug BA, et al. A roadmap for therapeutic discovery in pulmonary hypertension associated with left heart failure. A scientific statement of the Heart Failure Association (HFA) of the ESC and the ESC Working Group on Pulmonary Circulation & Right Ventricular Function. Eur J Heart Fail. 2024;26:707–729. doi: 10.1002/ejhf.3236. PubMed DOI PMC