Analysis of immune cell populations in atrial myocardium of patients with atrial fibrillation or sinus rhythm
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
28225836
PubMed Central
PMC5321459
DOI
10.1371/journal.pone.0172691
PII: PONE-D-16-41013
Knihovny.cz E-zdroje
- MeSH
- B-lymfocyty imunologie patologie MeSH
- fibrilace síní imunologie patologie patofyziologie MeSH
- lidé středního věku MeSH
- lidé MeSH
- mastocyty imunologie patologie MeSH
- myokard imunologie patologie MeSH
- počet buněk MeSH
- senioři MeSH
- sinusová arytmie imunologie patologie patofyziologie MeSH
- srdeční síně imunologie patologie patofyziologie MeSH
- T-lymfocyty imunologie patologie MeSH
- tvar buňky MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Atrial fibrillation (AF) is the most common arrhythmia and despite obvious clinical importance remains its pathogenesis only partially explained. A relation between inflammation and AF has been suggested by findings of increased inflammatory markers in AF patients. OBJECTIVE: The goal of this study was to characterize morphologically and functionally CD45-positive inflammatory cell populations in atrial myocardium of patients with AF as compared to sinus rhythm (SR). METHODS: We examined 46 subjects (19 with AF, and 27 in SR) undergoing coronary bypass or valve surgery. Peroperative bioptic samples of the left and the right atrial tissue were examined using immunohistochemistry. RESULTS: The number of CD3+ T-lymphocytes and CD68-KP1+ cells were elevated in the left atrial myocardium of patients with AF compared to those in SR. Immune cell infiltration of LA was related to the rhythm, but not to age, body size, LA size, mitral regurgitation grade, type of surgery, systemic markers of inflammation or presence of diabetes or hypertension. Most of CD68-KP1+ cells corresponded to dendritic cell population based on their morphology and immunoreactivity for DC-SIGN. The numbers of mast cells and CD20+ B-lymphocytes did not differ between AF and SR patients. No foci of inflammation were detected in any sample. CONCLUSIONS: An immunohistochemical analysis of samples from patients undergoing open heart surgery showed moderate and site-specific increase of inflammatory cells in the atrial myocardium of patients with AF compared to those in SR, with prevailing population of monocyte-macrophage lineage. These cells and their cytokine products may play a role in atrial remodeling and AF persistence.
Institute for Clinical and Experimental Medicine IKEM Department of Cardiology Prague Czech Republic
Zobrazit více v PubMed
Heeringa J, van der Kuip DA, Hofman A, Kors JA, van Herpen G, Stricker BH, et al. Prevalence, incidence and lifetime risk of atrial fibrillation: the Rotterdam study. Eur Heart J. 2006;27(8):949–53. 10.1093/eurheartj/ehi825 PubMed DOI
European Heart Rhythm A, European Association for Cardio-Thoracic S, Camm AJ, Kirchhof P, Lip GY, Schotten U, et al. Guidelines for the management of atrial fibrillation: the Task Force for the Management of Atrial Fibrillation of the European Society of Cardiology (ESC). Eur Heart J. 2010;31(19):2369–429. 10.1093/eurheartj/ehq278 PubMed DOI
European Heart Rhythm A, European Cardiac Arrhythmia S, American College of C, American Heart A, Society of Thoracic S, Calkins H, et al. HRS/EHRA/ECAS expert Consensus Statement on catheter and surgical ablation of atrial fibrillation: recommendations for personnel, policy, procedures and follow-up. A report of the Heart Rhythm Society (HRS) Task Force on catheter and surgical ablation of atrial fibrillation. Heart Rhythm. 2007;4(6):816–61. 10.1016/j.hrthm.2007.04.005 PubMed DOI
Fabritz L, Guasch E, Antoniades C, Bardinet I, Benninger G, Betts TR, et al. Expert consensus document: Defining the major health modifiers causing atrial fibrillation: a roadmap to underpin personalized prevention and treatment. Nat Rev Cardiol. 2016;13(4):230–7. 10.1038/nrcardio.2015.194 PubMed DOI
Wakili R, Voigt N, Kaab S, Dobrev D, Nattel S. Recent advances in the molecular pathophysiology of atrial fibrillation. J Clin Invest. 2011;121(8):2955–68. PubMed Central PMCID: PMCPMC3148739. 10.1172/JCI46315 PubMed DOI PMC
Corradi D. Atrial fibrillation from the pathologist's perspective. Cardiovasc Pathol. 2014;23(2):71–84. 10.1016/j.carpath.2013.12.001 PubMed DOI
Corradi D, Callegari S, Manotti L, Ferrara D, Goldoni M, Alinovi R, et al. Persistent lone atrial fibrillation: clinicopathologic study of 19 cases. Heart Rhythm. 2014;11(7):1250–8. 10.1016/j.hrthm.2014.02.008 PubMed DOI
Allessie M, Ausma J, Schotten U. Electrical, contractile and structural remodeling during atrial fibrillation. Cardiovasc Res. 2002;54(2):230–46. PubMed PMID: 12062329. PubMed
Pandozi C, Bianconi L, Villani M, Gentilucci G, Castro A, Altamura G, et al. Electrophysiological characteristics of the human atria after cardioversion of persistent atrial fibrillation. Circulation. 1998;98(25):2860–5. PubMed PMID: 9860788. PubMed
Ausma J, Wijffels M, Thone F, Wouters L, Allessie M, Borgers M. Structural changes of atrial myocardium due to sustained atrial fibrillation in the goat. Circulation. 1997;96(9):3157–63. PubMed PMID: 9386188. PubMed
Frustaci A, Chimenti C, Bellocci F, Morgante E, Russo MA, Maseri A. Histological substrate of atrial biopsies in patients with lone atrial fibrillation. Circulation. 1997;96(4):1180–4. Epub 1997/08/19. PubMed PMID: 9286947. PubMed
Aldhoon B, Melenovsky V, Peichl P, Kautzner J. New insights into mechanisms of atrial fibrillation. Physiol Res. 2010;59(1):1–12. PubMed PMID: 19249911. PubMed
Burstein B, Nattel S. Atrial fibrosis: mechanisms and clinical relevance in atrial fibrillation. J Am Coll Cardiol. 2008;51(8):802–9. 10.1016/j.jacc.2007.09.064 PubMed DOI
van Brakel TJ, van der Krieken T, Westra SW, van der Laak JA, Smeets JL, van Swieten HA. Fibrosis and electrophysiological characteristics of the atrial appendage in patients with atrial fibrillation and structural heart disease. J Interv Card Electrophysiol. 2013;38(2):85–93. 10.1007/s10840-013-9820-8 PubMed DOI
Nguyen BL, Fishbein MC, Chen LS, Chen PS, Masroor S. Histopathological substrate for chronic atrial fibrillation in humans. Heart Rhythm. 2009;6(4):454–60. PubMed Central PMCID: PMCPMC2662134. 10.1016/j.hrthm.2009.01.010 PubMed DOI PMC
Wu H, Xie J, Li GN, Chen QH, Li R, Zhang XL, et al. Possible involvement of TGF-beta/periostin in fibrosis of right atrial appendages in patients with atrial fibrillation. Int J Clin Exp Pathol. 2015;8(6):6859–69. PubMed PMID: 26261573; PubMed Central PMCID: PMCPMC4525907. PubMed PMC
Corradi D, Callegari S, Benussi S, Nascimbene S, Pastori P, Calvi S, et al. Regional left atrial interstitial remodeling in patients with chronic atrial fibrillation undergoing mitral-valve surgery. Virchows Arch. 2004;445(5):498–505. 10.1007/s00428-004-1040-2 PubMed DOI
Guo Y, Lip GY, Apostolakis S. Inflammation in atrial fibrillation. J Am Coll Cardiol. 2012;60(22):2263–70. 10.1016/j.jacc.2012.04.063 PubMed DOI
Boos CJ, Anderson RA, Lip GY. Is atrial fibrillation an inflammatory disorder? Eur Heart J. 2006;27(2):136–49. 10.1093/eurheartj/ehi645 PubMed DOI
Verheule S, Wilson E, Everett Tt, Shanbhag S, Golden C, Olgin J. Alterations in atrial electrophysiology and tissue structure in a canine model of chronic atrial dilatation due to mitral regurgitation. Circulation. 2003;107(20):2615–22. Epub 2003/05/07. PubMed Central PMCID: PMC1995672. 10.1161/01.CIR.0000066915.15187.51 PubMed DOI PMC
Liao CH, Akazawa H, Tamagawa M, Ito K, Yasuda N, Kudo Y, et al. Cardiac mast cells cause atrial fibrillation through PDGF-A-mediated fibrosis in pressure-overloaded mouse hearts. J Clin Invest. 2010;120(1):242–53. Epub 2009/12/30. PubMed Central PMCID: PMC2798688. 10.1172/JCI39942 PubMed DOI PMC
Nakamura Y, Nakamura K, Fukushima-Kusano K, Ohta K, Matsubara H, Hamuro T, et al. Tissue factor expression in atrial endothelia associated with nonvalvular atrial fibrillation: possible involvement in intracardiac thrombogenesis. Thromb Res. 2003;111(3):137–42. Epub 2003/12/18. PubMed
Chen MC, Chang JP, Liu WH, Yang CH, Chen YL, Tsai TH, et al. Increased inflammatory cell infiltration in the atrial myocardium of patients with atrial fibrillation. Am J Cardiol. 2008;102(7):861–5. Epub 2008/09/23. 10.1016/j.amjcard.2008.05.038 PubMed DOI
Yamashita T, Sekiguchi A, Iwasaki YK, Date T, Sagara K, Tanabe H, et al. Recruitment of immune cells across atrial endocardium in human atrial fibrillation. Circ J. 2010;74(2):262–70. Epub 2009/12/17. PubMed
Platonov PG, Mitrofanova LB, Orshanskaya V, Ho SY. Structural abnormalities in atrial walls are associated with presence and persistency of atrial fibrillation but not with age. J Am Coll Cardiol. 2011;58(21):2225–32. Epub 2011/11/15. 10.1016/j.jacc.2011.05.061 PubMed DOI
Rudolph V, Andrie RP, Rudolph TK, Friedrichs K, Klinke A, Hirsch-Hoffmann B, et al. Myeloperoxidase acts as a profibrotic mediator of atrial fibrillation. Nat Med. 2010;16(4):470–4. PubMed Central PMCID: PMCPMC2880896. 10.1038/nm.2124 PubMed DOI PMC
Smorodinova N, Lantova L, Blaha M, Melenovsky V, Hanzelka J, Pirk J, et al. Bioptic Study of Left and Right Atrial Interstitium in Cardiac Patients with and without Atrial Fibrillation: Interatrial but Not Rhythm-Based Differences. PLoS One. 2015;10(6):e0129124 PubMed Central PMCID: PMCPMC4466374. 10.1371/journal.pone.0129124 PubMed DOI PMC
Yamashita T, Sekiguchi A, Suzuki S, Ohtsuka T, Sagara K, Tanabe H, et al. Enlargement of the left atrium is associated with increased infiltration of immune cells in patients with atrial fibrillation who had undergone surgery. J Arrhythm. 2015;31(2):78–82. PubMed Central PMCID: PMCPMC4550127. 10.1016/j.joa.2014.07.003 PubMed DOI PMC
Begieneman MP, Rijvers L, Kubat B, Paulus WJ, Vonk AB, van Rossum AC, et al. Atrial fibrillation coincides with the advanced glycation end product N(epsilon)-(carboxymethyl)lysine in the atrium. Am J Pathol. 2015;185(8):2096–104. 10.1016/j.ajpath.2015.04.018 PubMed DOI
Caforio AL, Pankuweit S, Arbustini E, Basso C, Gimeno-Blanes J, Felix SB, et al. Current state of knowledge on aetiology, diagnosis, management, and therapy of myocarditis: a position statement of the European Society of Cardiology Working Group on Myocardial and Pericardial Diseases. Eur Heart J. 2013;34(33):2636–48, 48a-48d. 10.1093/eurheartj/eht210 PubMed DOI
Maisch B, Richter A, Sandmoller A, Portig I, Pankuweit S, Network BM-HF. Inflammatory dilated cardiomyopathy (DCMI). Herz. 2005;30(6):535–44. 10.1007/s00059-005-2730-5 PubMed DOI
Aldhoon B, Kucera T, Smorodinova N, Martinek J, Melenovsky V, Kautzner J. Associations between cardiac fibrosis and permanent atrial fibrillation in advanced heart failure. Physiol Res. 2013;62(3):247–55. PubMed
De Jong AM, Maass AH, Oberdorf-Maass SU, Van Veldhuisen DJ, Van Gilst WH, Van Gelder IC. Mechanisms of atrial structural changes caused by stretch occurring before and during early atrial fibrillation. Cardiovasc Res. 2011;89(4):754–65. 10.1093/cvr/cvq357 PubMed DOI
Qu YC, Du YM, Wu SL, Chen QX, Wu HL, Zhou SF. Activated nuclear factor-kappaB and increased tumor necrosis factor-alpha in atrial tissue of atrial fibrillation. Scand Cardiovasc J. 2009;43(5):292–7. 10.1080/14017430802651803 PubMed DOI
Haemers P, Hamdi H, Guedj K, Suffee N, Farahmand P, Popovic N, et al. Atrial fibrillation is associated with the fibrotic remodelling of adipose tissue in the subepicardium of human and sheep atria. Eur Heart J. 2015. PubMed
de Oliveira IM, Oliveira BD, Scanavacca MI, Gutierrez PS. Fibrosis, myocardial crossings, disconnections, abrupt turns, and epicardial reflections: do they play an actual role in human permanent atrial fibrillation? A controlled necropsy study. Cardiovasc Pathol. 2013;22(1):65–9. 10.1016/j.carpath.2012.06.001 PubMed DOI
Rocken C, Peters B, Juenemann G, Saeger W, Klein HU, Huth C, et al. Atrial amyloidosis: an arrhythmogenic substrate for persistent atrial fibrillation. Circulation. 2002;106(16):2091–7. PubMed
Afanasyeva M, Georgakopoulos D, Rose NR. Autoimmune myocarditis: cellular mediators of cardiac dysfunction. Autoimmun Rev. 2004;3(7–8):476–86. 10.1016/j.autrev.2004.08.009 PubMed DOI
Marty RR, Eriksson U. Dendritic cells and autoimmune heart failure. Int J Cardiol. 2006;112(1):34–9. 10.1016/j.ijcard.2006.06.022 PubMed DOI
Pistulli R, Konig S, Drobnik S, Kretzschmar D, Rohm I, Lichtenauer M, et al. Decrease in dendritic cells in endomyocardial biopsies of human dilated cardiomyopathy. Eur J Heart Fail. 2013;15(9):974–85. 10.1093/eurjhf/hft054 PubMed DOI
Begieneman MP, Emmens RW, Rijvers L, Kubat B, Paulus WJ, Vonk AB, et al. Ventricular myocarditis coincides with atrial myocarditis in patients. Cardiovasc Pathol. 2016;25(2):141–8. 10.1016/j.carpath.2015.12.001 PubMed DOI
"Form follows function": the developmental morphology of the cardiac atria