Coronary Artery Disease Is Associated with an Increased Amount of T Lymphocytes in Human Epicardial Adipose Tissue
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
30881222
PubMed Central
PMC6383418
DOI
10.1155/2019/4075086
Knihovny.cz E-zdroje
- MeSH
- B-lymfocyty MeSH
- imunohistochemie MeSH
- kvantitativní polymerázová řetězová reakce MeSH
- lidé středního věku MeSH
- lidé MeSH
- nemoci koronárních tepen krev imunologie metabolismus MeSH
- perikard imunologie metabolismus MeSH
- podkožní tuk imunologie metabolismus MeSH
- průtoková cytometrie MeSH
- senioři MeSH
- T-lymfocyty imunologie metabolismus MeSH
- tuková tkáň imunologie metabolismus MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
Immunocompetent cells including lymphocytes play a key role in the development of adipose tissue inflammation and obesity-related cardiovascular complications. The aim of the study was to explore the relationship between epicardial adipose tissue lymphocytes and coronary artery disease (CAD). To this end, we studied the content and phenotype of lymphocytes in peripheral blood, subcutaneous adipose tissue (SAT), and epicardial adipose tissue (EAT) in subjects with and without CAD undergoing elective cardiac surgery. Eleven subjects without CAD (non-CAD group) and 22 age-, BMI-, and HbA1C-matched individuals with CAD were included into the study. Blood, SAT, and EAT samples were obtained at the beginning of surgery. Lymphocyte populations were quantified as % of CD45+ cells using flow cytometry. Subjects with CAD had a higher total lymphocyte amount in EAT compared with SAT (32.24 ± 7.45 vs. 11.22 ± 1.34%, p = 0.025) with a similar trend observed in non-CAD subjects (29.68 ± 7.61 vs. 10.13 ± 2.01%, p = 0.067). T (CD3+) cells were increased (75.33 ± 2.18 vs. 65.24 ± 4.49%, p = 0.032) and CD3- cells decreased (21.17 ± 2.26 vs. 31.64 ± 4.40%, p = 0.028) in EAT of CAD relative to the non-CAD group. In both groups, EAT showed an elevated percentage of B cells (5.22 ± 2.43 vs. 0.96 ± 0.21%, p = 0.039 for CAD and 12.49 ± 5.83 vs. 1.16 ± 0.19%, p = 0.016 for non-CAD) and reduced natural killer (NK) cells (5.96 ± 1.32 vs. 13.22 ± 2.10%, p = 0.012 for CAD and 5.32 ± 1.97 vs. 13.81 ± 2.72%, p = 0.022 for non-CAD) relative to SAT. In conclusion, epicardial adipose tissue in subjects with CAD shows an increased amount of T lymphocytes relative to non-CAD individuals as well as a higher number of total and B lymphocytes and reduced NK cells as compared with corresponding SAT. These changes could contribute to the development of local inflammation and coronary atherosclerosis.
Zobrazit více v PubMed
Neels J. G., Olefsky J. M. Inflamed fat: what starts the fire? Journal of Clinical Investigation. 2006;116(1):33–35. doi: 10.1172/JCI27280. PubMed DOI PMC
Murdolo G., Smith U. The dysregulated adipose tissue: a connecting link between insulin resistance, type 2 diabetes mellitus and atherosclerosis. Nutrition, Metabolism and Cardiovascular Diseases. 2006;16(Supplement 1):S35–S38. doi: 10.1016/j.numecd.2005.10.016. PubMed DOI
Guzzardi M. A., Iozzo P. Fatty heart, cardiac damage, and inflammation. The Review of Diabetic Studies. 2011;8(3):403–417. doi: 10.1900/RDS.2011.8.403. PubMed DOI PMC
Ohman M. K., Wright A. P., Wickenheiser K. J., Luo W., Eitzman D. T. Visceral adipose tissue and atherosclerosis. Current Vascular Pharmacology. 2009;7(2):169–179. doi: 10.2174/157016109787455680. PubMed DOI
Henrichot E., Juge-Aubry C. E., Pernin A., et al. Production of chemokines by perivascular adipose tissue: a role in the pathogenesis of atherosclerosis? Arteriosclerosis, Thrombosis, and Vascular Biology. 2005;25(12):2594–2599. doi: 10.1161/01.ATV.0000188508.40052.35. PubMed DOI
Iacobellis G., Corradi D., Sharma A. M. Epicardial adipose tissue: anatomic, biomolecular and clinical relationships with the heart. Nature Clinical Practice Cardiovascular Medicine. 2005;2(10):536–543. doi: 10.1038/ncpcardio0319. PubMed DOI
McQuaid S. E., Hodson L., Neville M. J., et al. Downregulation of adipose tissue fatty acid trafficking in obesity: a driver for ectopic fat deposition? Diabetes. 2011;60(1):47–55. doi: 10.2337/db10-0867. PubMed DOI PMC
Iacobellis G., Ribaudo M. C., Assael F., et al. Echocardiographic epicardial adipose tissue is related to anthropometric and clinical parameters of metabolic syndrome: a new indicator of cardiovascular risk. The Journal of Clinical Endocrinology & Metabolism. 2003;88(11):5163–5168. doi: 10.1210/jc.2003-030698. PubMed DOI
Salazar J., Luzardo E., Mejías J. C., et al. Epicardial fat: physiological, pathological, and therapeutic implications. Cardiology Research and Practice. 2016;2016:15. doi: 10.1155/2016/1291537.1291537 PubMed DOI PMC
Zhou Y., Wei Y., Wang L., et al. Decreased adiponectin and increased inflammation expression in epicardial adipose tissue in coronary artery disease. Cardiovascular Diabetology. 2011;10(1):p. 2. doi: 10.1186/1475-2840-10-2. PubMed DOI PMC
Baker A. R., da Silva N. F., Quinn D. W., et al. Human epicardial adipose tissue expresses a pathogenic profile of adipocytokines in patients with cardiovascular disease. Cardiovascular Diabetology. 2006;5(1):p. 1. doi: 10.1186/1475-2840-5-1. PubMed DOI PMC
Hirata Y., Kurobe H., Akaike M., et al. Enhanced inflammation in epicardial fat in patients with coronary artery disease. International Heart Journal. 2011;52(3):139–142. doi: 10.1536/ihj.52.139. PubMed DOI
Mazurek T., Zhang L. F., Zalewski A., et al. Human epicardial adipose tissue is a source of inflammatory mediators. Circulation. 2003;108(20):2460–2466. doi: 10.1161/01.CIR.0000099542.57313.C5. PubMed DOI
Gruzdeva O., Uchasova E., Dyleva Y., et al. Relationships between epicardial adipose tissue thickness and adipo-fibrokine indicator profiles post-myocardial infarction. Cardiovascular Diabetology. 2018;17(1):p. 40. doi: 10.1186/s12933-018-0679-y. PubMed DOI PMC
Cildir G., Akincilar S. C., Tergaonkar V. Chronic adipose tissue inflammation: all immune cells on the stage. Trends in Molecular Medicine. 2013;19(8):487–500. doi: 10.1016/j.molmed.2013.05.001. PubMed DOI
Guzik T. J., Skiba D. S., Touyz R. M., Harrison D. G. The role of infiltrating immune cells in dysfunctional adipose tissue. Cardiovascular Research. 2017;113(9):1009–1023. doi: 10.1093/cvr/cvx108. PubMed DOI PMC
Harman-Boehm I., Bluher M., Redel H., et al. Macrophage infiltration into omental versus subcutaneous fat across different populations: effect of regional adiposity and the comorbidities of obesity. The Journal of Clinical Endocrinology & Metabolism. 2007;92(6):2240–2247. doi: 10.1210/jc.2006-1811. PubMed DOI
Kintscher U., Hartge M., Hess K., et al. T-lymphocyte infiltration in visceral adipose tissue: a primary event in adipose tissue inflammation and the development of obesity-mediated insulin resistance. Arteriosclerosis, Thrombosis, and Vascular Biology. 2008;28(7):1304–1310. doi: 10.1161/ATVBAHA.108.165100. PubMed DOI
Winer S., Chan Y., Paltser G., et al. Normalization of obesity-associated insulin resistance through immunotherapy. Nature Medicine. 2009;15(8):921–929. doi: 10.1038/nm.2001. PubMed DOI PMC
Luckheeram R. V., Zhou R., Verma A. D., Xia B. CD4+T cells: differentiation and functions. Clinical and Developmental Immunology. 2012;2012, article 925135:12. doi: 10.1155/2012/925135. PubMed DOI PMC
Nishimura S., Manabe I., Nagasaki M., et al. CD8+ effector T cells contribute to macrophage recruitment and adipose tissue inflammation in obesity. Nature Medicine. 2009;15(8):914–920. doi: 10.1038/nm.1964. PubMed DOI
Cinkajzlova A., Mraz M., Haluzik M. Lymphocytes and macrophages in adipose tissue in obesity: markers or makers of subclinical inflammation? Protoplasma. 2017;254(3):1219–1232. doi: 10.1007/s00709-017-1082-3. PubMed DOI
Kremen J., Dolinkova M., Krajickova J., et al. Increased subcutaneous and epicardial adipose tissue production of proinflammatory cytokines in cardiac surgery patients: possible role in postoperative insulin resistance. The Journal of Clinical Endocrinology & Metabolism. 2006;91(11):4620–4627. doi: 10.1210/jc.2006-1044. PubMed DOI
Smorodinova N., Blaha M., Melenovsky V., et al. Analysis of immune cell populations in atrial myocardium of patients with atrial fibrillation or sinus rhythm. PLoS One. 2017;12(2, article e0172691) doi: 10.1371/journal.pone.0172691. PubMed DOI PMC
Chatterjee T. K., Stoll L. L., Denning G. M., et al. Proinflammatory phenotype of perivascular adipocytes: influence of high-fat feeding. Circulation Research. 2009;104(4):541–549. doi: 10.1161/CIRCRESAHA.108.182998. PubMed DOI PMC
Vianello E., Dozio E., Arnaboldi F., et al. Epicardial adipocyte hypertrophy: association with M1-polarization and toll-like receptor pathways in coronary artery disease patients. Nutrition, Metabolism and Cardiovascular Diseases. 2016;26(3):246–253. doi: 10.1016/j.numecd.2015.12.005. PubMed DOI
Tiemessen M. M., Jagger A. L., Evans H. G., van Herwijnen M. J. C., John S., Taams L. S. CD4+CD25+Foxp3+ regulatory T cells induce alternative activation of human monocytes/macrophages. Proceedings of the National Academy of Sciences. 2007;104(49):19446–19451. doi: 10.1073/pnas.0706832104. PubMed DOI PMC
Braun N. A., Covarrubias R., Major A. S. Natural killer T cells and atherosclerosis: form and function meet pathogenesis. Journal of Innate Immunity. 2010;2(4):316–324. doi: 10.1159/000296915. PubMed DOI PMC
Horckmans M., Bianchini M., Santovito D., et al. Pericardial adipose tissue regulates granulopoiesis, fibrosis, and cardiac function after myocardial infarction. Circulation. 2018;137(9):948–960. doi: 10.1161/CIRCULATIONAHA.117.028833. PubMed DOI
Chen X., Jensen P. E. The role of B lymphocytes as antigen-presenting cells. Archivum Immunologiae et Therapiae Experimentalis. 2008;56(2):77–83. doi: 10.1007/s00005-008-0014-5. PubMed DOI
Wensveen F. M., Jelencic V., Valentic S., et al. NK cells link obesity-induced adipose stress to inflammation and insulin resistance. Nature Immunology. 2015;16(4):376–385. doi: 10.1038/ni.3120. PubMed DOI
Rutter M. K., Meigs J. B., Sullivan L. M., D’Agostino R. B., Sr., Wilson P. W. F. C-reactive protein, the metabolic syndrome, and prediction of cardiovascular events in the Framingham offspring study. Circulation. 2004;110(4):380–385. doi: 10.1161/01.CIR.0000136581.59584.0E. PubMed DOI
Romagnani S., Maggi E., Liotta F., Cosmi L., Annunziato F. Properties and origin of human Th17 cells. Molecular Immunology. 2009;47(1):3–7. doi: 10.1016/j.molimm.2008.12.019. PubMed DOI
Gaborit B., Venteclef N., Ancel P., et al. Human epicardial adipose tissue has a specific transcriptomic signature depending on its anatomical peri-atrial, peri-ventricular, or peri-coronary location. Cardiovascular Research. 2015;108(1):62–73. doi: 10.1093/cvr/cvv208. PubMed DOI