Myocardial development in crocodylians
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
36045487
DOI
10.1002/dvdy.527
Knihovny.cz E-zdroje
- Klíčová slova
- cardiac conduction system, crocodile embryo, heart, optical mapping, septation, vasculogenesis,
- MeSH
- myokard MeSH
- převodní systém srdeční * MeSH
- srdce * fyziologie MeSH
- srdeční komory MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
BACKGROUND: Recent reports confirmed the notion that there exists a rudimentary cardiac conduction system (CCS) in the crocodylian heart, and development of its ventricular part is linked to septation. We thus analyzed myocardial development with the emphasis on the CCS components and vascularization in two different crocodylian species. RESULTS: Using optical mapping and HNK-1 immunostaining, pacemaker activity was localized to the right-sided sinus venosus. The atrioventricular conduction was restricted to dorsal part of the atrioventricular canal. Within the ventricle, the impulse was propagated from base-to-apex initially by the trabeculae, later by the ventricular septum, in which strands of HNK-1 positivity were temporarily observed. Completion of ventricular septation correlated with transition of ventricular epicardial activation pattern to mature apex-to-base direction from two periapical foci. Despite a gradual thickening of the ventricular wall, no morphological differentiation of the Purkinje network was observed. Thin-walled coronary vessels with endothelium positive for QH1 obtained a smooth muscle coat after septation. Intramyocardial vessels were abundant especially in the rapidly thickening left ventricular wall. CONCLUSIONS: Most of the CCS components present in the homeiotherm hearts can be identified in the developing crocodylian heart, with a notable exception of the Purkinje network distinct from the trabeculae carneae.
Institute of Anatomy 1st Faculty of Medicine Charles University Prague Czech Republic
Institute of Physiology The Czech Academy of Sciences Prague Czech Republic
Zobrazit více v PubMed
Mommersteeg MT, Hoogaars WM, Prall OW, et al. Molecular pathway for the localized formation of the sinoatrial node. Circ Res. 2007;100(3):354-362.
Fedorov VV, Glukhov AV, Chang R, et al. Optical mapping of the isolated coronary-perfused human sinus node. J Am Coll Cardiol. 2010;56(17):1386-1394.
Komuro H, Sakai T, Hirota A, Kamino K. Conduction pattern of excitation in the amphibian atrium assessed by multiple-site optical recording of action potentials. Jpn J Physiol. 1986;36(1):123-137.
Sedmera D, Wessels A, Trusk TC, Thompson RP, Hewett KW, Gourdie RG. Changes in activation sequence of embryonic chick atria correlate with developing myocardial architecture. Am J Physiol Heart Circ Physiol. 2006;291(4):H1646-H1652.
Aoyama N, Tamaki H, Kikawada R, Yamashina S. Development of the conduction system in the rat heart as determined by Leu-7 (HNK-1) immunohistochemistry and computer graphics reconstruction. Lab Invest. 1995;72(3):355-366.
James TN, St Martin E, Willis PW 3rd, Lohr TO. Apoptosis as a possible cause of gradual development of complete heart block and fatal arrhythmias associated with absence of the AV node, sinus node, and internodal pathways. Circulation. 1996;93(7):1424-1438.
Sedmera D, Reckova M, DeAlmeida A, et al. Functional and morphological evidence for a ventricular conduction system in the zebrafish and Xenopus heart. Am J Physiol Heart Circ Physiol. 2003;284:H1152-H1160.
Vostarek F, Svatunkova J, Sedmera D. Acute temperature effects on function of the chick embryonic heart. Acta Physiol (Oxf). 2016;217(4):276-286. https://doi.org10.1111/apha.12691
de Jong F, Opthof T, Wilde AA, et al. Persisting zones of slow impulse conduction in developing chicken hearts. Circ Res. 1992;71(2):240-250.
van Weerd JH, Christoffels VM. The formation and function of the cardiac conduction system. Development. 2016;143(2):197-210.
Chuck ET, Freeman DM, Watanabe M, Rosenbaum DS. Changing activation sequence in the embryonic chick heart. Implications for the development of the His-Purkinje system. Circ Res. 1997;81(4):470-476.
Burggren WW. Cardiac design in lower vertebrates: what can phylogeny reveal about ontogeny? Experientia. 1988;44(11-12):919-930.
Burggren WW, Christoffels VM, Crossley DA 2nd, et al. Comparative cardiovascular physiology: future trends, opportunities and challenges. Acta Physiol (Oxf). 2014;210(2):257-276.
Hanemaaijer J, Gregorovicova M, Nielsen JM, et al. Identification of the building blocks of ventricular septation in monitor lizards (Varanidae). Development. 2019;146(14). https://doi.org10.1242/dev.177121
Gregorovicova M, Sedmera D, Jensen B. Relative position of the atrioventricular canal determines the electrical activation of developing reptile ventricles. J Exp Biol. 2018;221. https://doi.org10.1242/jeb.178400
Jensen B, Moorman AFM, Wang T. Structure and function of the hearts of lizards and snakes. Biol Rev. 2014;89(2):302-336. https://doi.org10.1111/brv.12056
Brusatte SL, Benton MJ, Desojo JB, Langer MC. The higher-level phylogeny of Archosauria (Tetrapoda: Diapsida). J Syst Palaeontol. 2010;8(1):3-47. doi:10.1080/14772010903537732
Stephenson A, Adams JW, Vaccarezza M. The vertebrate heart: an evolutionary perspective. J Anat. 2017;231(6):787-797. https://doi.org10.1111/joa.12687
Christian E, Grigg GC. Electrical activation of the ventricular myocardium of the crocodile Crocodylus johnstoni: a combined microscopic and electrophysiological study. Comp Biochem Physiol A Mol Integr Physiol. 1999;123(1):17-23.
Jensen B, Boukens BJ, Crossley DA 2nd, et al. Specialized impulse conduction pathway in the alligator heart. eLife. 2018;7. https://doi.org10.7554/eLife.32120
Poelmann RE, Gittenberger-de Groot AC, Goerdajal C, Grewal N, De Bakker MAG, Richardson MK. Ventricular septation and outflow tract development in crocodilians result in two aortas with bicuspid semilunar valves. J Cardiovasc Dev Dis. 2021;8(10). https://doi.org10.3390/jcdd8100132
Davies F, Francis ET, King TS. The conducting (connecting) system of the crocodilian heart. J Anat. 1952;86(2):152-161.
Greil A. Beitrage zur vergelichenden anatomie und entwicklungsgeschichte des herzens und des trauncus arteriosus der wirbelthiere. Morph Jahrbuch. 1903;31:123-310.
Reckova M, Rosengarten C, de Almeida A, et al. Hemodynamics is a key epigenetic factor in development of the cardiac conduction system. Circ Res. 2003;93(1):77-85.
Morley GE, Vaidya D. Understanding conduction of electrical impulses in the mouse heart using high-resolution video imaging technology. Microsc Res Tech. 2001;52(3):241-250.
Kvasilova A, Olejnickova V, Jensen B, et al. The formation of the atrioventricular conduction axis is linked in development to ventricular septation. J Exp Biol. 2020;223(Pt 19). https://doi.org10.1242/jeb.229278
Sedmera D, Pexieder T, Vuillemin M, Thompson RP, Anderson RH. Developmental patterning of the myocardium. Anat Rec. 2000;258(4):319-337.
Meganathan PR, Dubey B, Batzer MA, Ray DA, Haque I. Molecular phylogenetic analyses of genus Crocodylus (Eusuchia, Crocodylia, Crocodylidae) and the taxonomic position of Crocodylus porosus. Mol Phylogenet Evol. 2010;57(1):393-402. https://doi.org10.1016/j.ympev.2010.06.011
Kvasilova A, Gregorovicova M, Kundrat M, Sedmera D. HNK-1 in morphological study of development of the cardiac conduction system in selected groups of Sauropsida. Anat Rec. 2019;302(1):69-82. https://doi.org10.1002/ar.23925
Hu N, Sedmera D, Yost HJ, Clark EB. Structure and function of the developing zebrafish heart. Anat Rec. 2000;260(2):148-157.
Poelmann RE, Gittenberger-de Groot AC, Mentink MM, Bokenkamp R, Hogers B. Development of the cardiac coronary vascular endothelium, studied with antiendothelial antibodies, in chicken-quail chimeras. Circ Res. 1993;73(3):559-568.
Christoffels VM, Hoogaars WM, Moorman AF. Patterning and development of the conduction system of the heart: origins of the conduction system in development. In: Rosenthal N, Harvey RP, eds. Heart Development and Regeneration. Vol 1. London: Elsevier; 2010:171-194.
Jensen B, Boukens BJ, Postma AV, et al. Identifying the evolutionary building blocks of the cardiac conduction system. PLoS One. 2012;7(9):e44231.
Seymour RS, Bennett-Stamper CL, Johnston SD, Carrier DR, Grigg GC. Evidence for endothermic ancestors of crocodiles at the stem of archosaur evolution. Physiol Biochem Zool. 2004;77(6):1051-1067. doi:10.1086/422766
Glenny FH. Modifications of pattern in the aortic arch system of birds and their phylogenetic significance. Proc U S Natl Mus. 1955;104:525-621.
Litchenberg WH, Norman LW, Holwell AK, Martin KL, Hewett KW, Gourdie RG. The rate and anisotropy of impulse propagation in the postnatal terminal crest are correlated with remodeling of Cx43 gap junction pattern. Cardiovasc Res. 2000;45(2):379-387.
Jensen B, Vesterskov S, Boukens BJ, et al. Morpho-functional characterization of the systemic venous pole of the reptile heart. Sci Rep. 2017;7(1):6644. https://doi.org10.1038/s41598-017-06291-z
Abramochkin DV, Kuzmin VS, Matchkov V, Kamensky AA, Wang T. The snake heart pacemaker is localized near the sinoatrial valve. J Exp Biol. 2021;224(16). https://doi.org10.1242/jeb.242778
Sedmera D, Kucera P, Raddatz E. Developmental changes in cardiac recovery from anoxia-reoxygenation. Am J Physiol Regul Integr Comp Physiol. 2002;283(2):R379-R388.
Christoffels VM, Burch JB, Moorman AF. Architectural plan for the heart: early patterning and delineation of the chambers and the nodes. Trends Cardiovasc Med. 2004;14(8):301-307.
Kolditz DP, Wijffels MC, Blom NA, et al. Persistence of functional atrioventricular accessory pathways in postseptated embryonic avian hearts: implications for morphogenesis and functional maturation of the cardiac conduction system. Circulation. 2007;115(1):17-26.
Hahurij ND, Gittenberger-De Groot AC, Kolditz DP, et al. Accessory atrioventricular myocardial connections in the developing human heart: relevance for perinatal supraventricular tachycardias. Circulation. 2008;117(22):2850-2858.
Hahurij ND, Kolditz DP, Bokenkamp R, et al. Accessory atrioventricular myocardial pathways in mouse heart development: substrate for supraventricular tachycardias. Pediatr Res. 2011;70(1):37-43. https://doi.org10.1203/PDR.0b013e3182192bfa
Vicente Steijn R, Sedmera D, Blom NA, Jongbloed M, Kvasilova A, Nanka O. Apoptosis and epicardial contributions act as complementary factors in remodeling of the atrioventricular canal myocardium and atrioventricular conduction patterns in the embryonic chick heart. Dev Dyn. 2018;247(9):1033-1042. https://doi.org10.1002/dvdy.24642
Nanka O, Krizova P, Fikrle M, et al. Abnormal myocardial and coronary vasculature development in experimental hypoxia. Anat Rec. 2008;291(10):1187-1199.
Kolditz DP, Wijffels MC, Blom NA, et al. Epicardium-derived cells in development of annulus fibrosis and persistence of accessory pathways. Circulation. 2008;117(12):1508-1517.
Valderrabano M, Chen F, Dave AS, Lamp ST, Klitzner TS, Weiss JN. Atrioventricular ring reentry in embryonic mouse hearts. Circulation. 2006;114(6):543-549.
Cheng G, Wessels A, Gourdie RG, Thompson RP. Spatiotemporal distribution of apoptosis in embryonic chicken heart. Dev Dyn. 2002;223:119-133.
Chuck ET, Watanabe M. Differential expression of PSA-NCAM and HNK-1 epitopes in the developing cardiac conduction system of the chick. Dev Dyn. 1997;209(2):182-195.
Ikeda T, Iwasaki K, Shimokawa I, Sakai H, Ito H, Matsuo T. Leu-7 immunoreactivity in human and rat embryonic hearts, with special reference to the development of the conduction tissue. Anat Embryol. 1990;182(6):553-562.
van den Hoff MJ, Moorman AF, Ruijter JM, et al. Myocardialization of the cardiac outflow tract. Dev Biol. 1999;212(2):477-490.
van den Hoff MJ, Kruithof BP, Moorman AF, Markwald RR, Wessels A. Formation of myocardium after the initial development of the linear heart tube. Dev Biol. 2001;240(1):61-76. https://doi.org10.1006/dbio.2001.0449
Poelmann RE, Gittenberger-de Groot AC, Biermans MWM, et al. Outflow tract septation and the aortic arch system in reptiles: lessons for understanding the mammalian heart. Evodevo. 2017;8:9. https://doi.org10.1186/s13227-017-0072-z
Sankova B, Benes J Jr, Krejci E, et al. The effect of connexin40 deficiency on ventricular conduction system function during development. Cardiovasc Res. 2012;95:469-479.
Suma K. Sunao Tawara: a father of modern cardiology. Pacing Clin Electrophysiol. 2001;24(1):88-96.
Rohr S, Kleber AG, Kucera JP. Optical recording of impulse propagation in designer cultures. Cardiac tissue architectures inducing ultra-slow conduction. Trends Cardiovasc Med. 1999;9(7):173-179.
Olejnickova V, Sankova B, Sedmera D, Janacek J. Trabecular architecture determines impulse propagation through the early embryonic mouse heart. Front Physiol. 2018;9:1876. https://doi.org10.3389/fphys.2018.01876
Janse MJ, Anderson RH. Specialized internodal atrial pathways-fact or fiction? Eur J Cardiol. 1974;2(2):117-136.
Anderson RH, Ho SY. The architecture of the sinus node, the atrioventricular conduction axis, and the internodal atrial myocardium. J Cardiovasc Electrophysiol. 1998;9(11):1233-1248.
Olejnickova V, Kocka M, Kvasilova A, et al. Gap junctional communication via connexin43 between Purkinje fibers and working myocytes explains the epicardial activation pattern in the postnatal mouse left ventricle. Int J Mol Sci. 2021;22(5). https://doi.org10.3390/ijms22052475
Rentschler S, Zander J, Meyers K, et al. Neuregulin-1 promotes formation of the murine cardiac conduction system. Proc Natl Acad Sci U S A. 2002;99(16):10464-10469.
Takebayashi-Suzuki K, Yanagisawa M, Gourdie RG, Kanzawa N, Mikawa T. In vivo induction of cardiac Purkinje fiber differentiation by coexpression of preproendothelin-1 and endothelin converting enzyme-1. Development. 2000;127(16):3523-3532.
Sedmera D, Thompson RP. Myocyte proliferation in the developing heart. Dev Dyn. 2011;240(6):1322-1334.
Faber JW, D'Silva A, Christoffels VM, Jensen B. Lack of morphometric evidence for ventricular compaction in humans. J Cardiol. 2021;78(5):397-405. https://doi.org10.1016/j.jjcc.2021.03.006
Pardanaud L, Altmann C, Kitos P, Dieterlen-Lievre F, Buck CA. Vasculogenesis in the early quail blastodisc as studied with a monoclonal antibody recognizing endothelial cells. Development. 1987;100(2):339-349.
DeRuiter MC, Poelmann RE, VanMunsteren JC, Mironov V, Markwald RR, Gittenberger-de Groot AC. Embryonic endothelial cells transdifferentiate into mesenchymal cells expressing smooth muscle actins in vivo and in vitro. Circ Res. 1997;80(4):444-451.
Vrancken Peeters MP, Gittenberger-de Groot AC, Mentink MM, Hungerford JE, Little CD, Poelmann RE. The development of the coronary vessels and their differentiation into arteries and veins in the embryonic quail heart. Dev Dyn. 1997;208(3):338-348.
Tomanek RJ. Formation of the coronary vasculature during development. Angiogenesis. 2005;8(3):273-284.
Tomanek RJ, Hansen HK, Dedkov EI. Vascular patterning of the quail coronary system during development. Anat Rec A Discov Mol Cell Evol Biol. 2006;288(9):989-999.
Tomanek RJ. Developmental progression of the coronary vasculature in human embryos and fetuses. Anat Rec. 2016;299(1):25-41. https://doi.org10.1002/ar.23283
Franco D, Icardo JM. Molecular characterization of the ventricular conduction system in the developing mouse heart: topographical correlation in normal and congenitally malformed hearts. Cardiovasc Res. 2001;49(2):417-429.
Bohuslavova R, Skvorova L, Sedmera D, Semenza GL, Pavlinkova G. Increased susceptibility of HIF-1alpha heterozygous-null mice to cardiovascular malformations associated with maternal diabetes. J Mol Cell Cardiol. 2013;60:129-141. https://doi.org10.1016/j.yjmcc.2013.04.015
Olejnickova V, Kolesova H, Bartos M, Sedmera D, Gregorovicova M. The tale-tell heart: evolutionary tetrapod shift from aquatic to terrestrial life-style reflected in heart changes in axolotl (Ambystoma mexicanum). Dev Dyn. 2022;251(6):1004-1014. https://doi.org10.1002/dvdy.413
Kundrat M. HNK-1 immunoreactivity during early morphogenesis of the head region in a nonmodel vertebrate, crocodile embryo. Naturwissenschaften. 2008;95(11):1063-1072.
Gregorovicova M, Kvasilova A, Sedmera D. Ossification pattern in forelimbs of the Siamese crocodile (Crocodylus siamensis): similarity in ontogeny of carpus among crocodylian species. Anat Rec. 2018;301(7):1159-1168. https://doi.org10.1002/ar.23792
Landova Sulcova M, Zahradnicek O, Dumkova J, et al. Developmental mechanisms driving complex tooth shape in reptiles. Dev Dyn. 2020;249(4):441-464. https://doi.org10.1002/dvdy.138
de la Rosa AJ, Dominguez JN, Sedmera D, et al. Functional suppression of Kcnq1 leads to early sodium channel remodeling and cardiac conduction system dysmorphogenesis. Cardiovasc Res. 2013;98(3):504-514.
"Form follows function": the developmental morphology of the cardiac atria