Participation of ventricular trabeculae in neonatal cardiac regeneration leads to ectopic recruitment of Purkinje-like cells
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
PurkinjeNet
Agence Nationale de la Recherche (French National Research Agency)
23711
AFM-Téléthon (French Muscular Dystrophy Association)
Institut Marmara
Aix-Marseille Université (Aix-Marseille University)
PubMed
39198628
DOI
10.1038/s44161-024-00530-z
PII: 10.1038/s44161-024-00530-z
Knihovny.cz E-zdroje
- MeSH
- buněčný rodokmen MeSH
- hyperplazie patologie MeSH
- kardiomyocyty patologie fyziologie MeSH
- myši transgenní MeSH
- myši MeSH
- novorozená zvířata * MeSH
- proliferace buněk MeSH
- Purkyňova vlákna * patofyziologie fyziologie patologie MeSH
- regenerace * fyziologie MeSH
- srdeční komory * patologie patofyziologie MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Unlike adult mammals, newborn mice can regenerate a functional heart after myocardial infarction; however, the precise origin of the newly formed cardiomyocytes and whether the distal part of the conduction system (the Purkinje fiber (PF) network) is properly formed in regenerated hearts remains unclear. PFs, as well as subendocardial contractile cardiomyocytes, are derived from trabeculae, transient myocardial ridges on the inner ventricular surface. Here, using connexin 40-driven genetic tracing, we uncover a substantial participation of the trabecular lineage in myocardial regeneration through dedifferentiation and proliferation. Concomitantly, regeneration disrupted PF network maturation, resulting in permanent PF hyperplasia and impaired ventricular conduction. Proliferation assays, genetic impairment of PF recruitment, lineage tracing and clonal analysis revealed that PF network hyperplasia results from excessive recruitment of PFs due to increased trabecular fate plasticity. These data indicate that PF network hyperplasia is a consequence of trabeculae participation in myocardial regeneration.
Aix Marseille Université CNRS UMR 7288 Developmental Biology Institute of Marseille Marseille France
Charles University 1st Faculty of Medicine Institute of Anatomy Prague Czech Republic
Zobrazit více v PubMed
Senyo, S. E. et al. Mammalian heart renewal by pre-existing cardiomyocytes. Nature 493, 433–436 (2013). PubMed DOI
Haissaguerre, M., Vigmond, E., Stuyvers, B., Hocini, M. & Bernus, O. Ventricular arrhythmias and the His-Purkinje system. Nat. Rev. Cardiol. 13, 155–166 (2016). PubMed DOI
Miquerol, L. et al. Biphasic development of the mammalian ventricular conduction system. Circ. Res. 107, 153–161 (2010). PubMed DOI
Miquerol, L. et al. Architectural and functional asymmetry of the His-Purkinje system of the murine heart. Cardiovasc. Res. 63, 77–86 (2004). PubMed DOI
Choquet, C., Kelly, R. G. & Miquerol, L. Nkx2-5 defines distinct scaffold and recruitment phases during formation of the murine cardiac Purkinje fiber network. Nat. Commun. 11, 5300 (2020). PubMed DOI PMC
Delorme, B. et al. Developmental regulation of connexin 40 gene expression in mouse heart correlates with the differentiation of the conduction system. Dev. Dyn. 204, 358–371 (1995). PubMed DOI
Tian, X. et al. Identification of a hybrid myocardial zone in the mammalian heart after birth. Nat. Commun. 8, 87 (2017). PubMed DOI PMC
Poss, K. D., Wilson, L. G. & Keating, M. T. Heart regeneration in zebrafish. Science 298, 2188–2190 (2002). PubMed DOI
Sedmera, D. & Thomas, P. S. Trabeculation in the embryonic heart. BioEssays 18, 607–607 (1996). PubMed DOI
Haubner, B. J. et al. Complete cardiac regeneration in a mouse model of myocardial infarction. Aging 4, 966–977 (2012). PubMed DOI PMC
Emde, B., Heinen, A., Gödecke, A. & Bottermann, K. Wheat germ agglutinin staining as a suitable method for detection and quantification of fibrosis in cardiac tissue after myocardial infarction. Eur. J. Histochem. 58, 315–319 (2014).
Porrello, E. R. et al. Regulation of neonatal and adult mammalian heart regeneration by the miR-15 family. Proc. Natl Acad. Sci. USA 110, 187–192 (2013). PubMed DOI
Wang, Z. et al. Mechanistic basis of neonatal heart regeneration revealed by transcriptome and histone modification profiling. Proc. Natl Acad. Sci. USA 116, 18455–18465 (2019). PubMed DOI PMC
Kretzschmar, K. et al. Profiling proliferative cells and their progeny in damaged murine hearts. Proc. Natl Acad. Sci. USA 115, E12245–E12254 (2018). PubMed DOI PMC
Pallante, B. A. et al. Contactin-2 expression in the cardiac Purkinje fiber network. Circ. Arrhythmia Electrophysiol. 3, 186–194 (2010). DOI
Gros, D. et al. Restricted distribution of connexin40, a gap junctional protein, in mammalian heart. Circ. Res. 74, 839–851 (1994). PubMed DOI
Kahr, P. C. et al. A novel transgenic Cre allele to label mouse cardiac conduction system: cardiac conduction system mouse model. Dev. Biol. 478, 163–172 (2021). PubMed DOI PMC
Shekhar, A. et al. Transcription factor ETV1 is essential for rapid conduction in the heart. J. Clin. Invest. 126, 4444–4459 (2016). PubMed DOI PMC
Kim, K. H. et al. Irx3 is required for postnatal maturation of the mouse ventricular conduction system. Sci. Rep. 6, 1–14 (2016).
Goodyer, W. R. et al. Transcriptomic profiling of the developing cardiac conduction system at single-cell resolution. Circ. Res. 125, 379–397 (2019). PubMed DOI PMC
Delgado, C. et al. Neural cell adhesion molecule is required for ventricular conduction system development. Dev. 148, dev199431 (2021). DOI
van Eif, V. W. W., Stefanovic, S., Mohan, R. A. & Christoffels, V. M. Gradual differentiation and confinement of the cardiac conduction system as indicated by marker gene expression. Biochim. Biophys. Acta Mol. Cell Res. 1867, 11509 (2020).
Liang, X. et al. HCN4 dynamically marks the first heart field and conduction system precursors. Circ. Res. 113, 399–407 (2013). PubMed DOI PMC
Li, Y. et al. Genetic targeting of Purkinje fibres by Sema3a-CreERT2. Sci Rep. 8, 1–9 (2018).
Meysen, S. et al. Nkx2.5 cell-autonomous gene function is required for the postnatal formation of the peripheral ventricular conduction system. Dev. Biol. 303, 740–753 (2007). PubMed DOI
Jay, P. Y. et al. Nkx2-5 mutation causes anatomic hypoplasia of the cardiac conduction system. J. Clin. Invest. 113, 1130–1137 (2004). PubMed DOI PMC
Sedmera, D. & Thompson, R. P. Myocyte proliferation in the developing heart. Dev. Dyn. 240, 1322–1334 (2011). PubMed DOI PMC
de Boer, B. A., van den Berg, G., de Boer, P. A. J., Moorman, A. F. M. & Ruijter, J. M. Growth of the developing mouse heart: An interactive qualitative and quantitative 3D atlas. Dev. Biol. 368, 203–213 (2012). PubMed DOI
Challice, C. E. & Virágh, S. The architectural development of the early mammalian heart. Tissue Cell 6, 447–462 (1973). DOI
Liu, X. et al. Cell proliferation fate mapping reveals regional cardiomyocyte cell-cycle activity in subendocardial muscle of left ventricle. Nature https://doi.org/10.1038/s41467-021-25933-5 (2021).
Sánchez-Iranzo, H. et al. Tbx5a lineage tracing shows cardiomyocyte plasticity during zebrafish heart regeneration. Nat. Commun. 9, 428 (2018). PubMed DOI
Cui, M. et al. Dynamic transcriptional responses to injury of regenerative and non-regenerative cardiomyocytes revealed by single-nucleus RNA sequencing. Dev. Cell 53, 102–116.e8 (2020). PubMed DOI PMC
Cui, M. et al. Nrf1 promotes heart regeneration and repair by regulating proteostasis and redox balance. Nat. Commun. 12, 1–15 (2021). DOI
Xiao, Q. et al. A p53-based genetic tracing system to follow postnatal cardiomyocyte expansion in heart regeneration. Dev. 144, 580–589 (2017). DOI
Kimura, W. et al. Hypoxia fate mapping identifies cycling cardiomyocytes in the adult heart. Nature 523, 226–230 (2015). PubMed DOI
Uva, G. D. et al. ERBB2 triggers mammalian heart regeneration by promoting cardiomyocyte dedifferentiation and proliferation. Nat. Cell Biol. 17, 627–638 (2015). PubMed DOI
Konfino, T., Landa, N., Ben-Mordechai, T. & Leor, J. The type of injury dictates the mode of repair in neonatal and adult heart. J. Am. Heart Assoc. 4, e001320 (2015). PubMed DOI PMC
Gemberling, M., Karra, R., Dickson, A. L. & Poss, K. D. Nrg1 is an injury-induced cardiomyocyte mitogen for the endogenous heart regeneration program in zebrafish. eLife 2015, 1–17 (2015).
Zhao, L. et al. Notch signaling regulates cardiomyocyte proliferation during zebrafish heart regeneration. Proc. Natl Acad. Sci. USA 111, 1403–1408 (2014). PubMed DOI PMC
Honkoop, H. et al. Single-cell analysis uncovers that metabolic reprogramming by ErbB2 signaling is essential for cardiomyocyte proliferation in the regenerating heart. eLife 8, 1–27 (2019). DOI
Bersell, K., Arab, S., Haring, B. & Kühn, B. Neuregulin1/ErbB4 signaling induces cardiomyocyte proliferation and repair of heart injury. Cell 138, 257–270 (2009). PubMed DOI
DeBenedittis, P. et al. Coupled myovascular expansion directs cardiac growth and regeneration. Development 149, dev200654 (2022). PubMed DOI PMC
Kikuchi, K. et al. Primary contribution to zebrafish heart regeneration by gata4 PubMed DOI PMC
van Duijvenboden, K. et al. Conserved NPPB PubMed DOI
Sergeeva, I. A. et al. A transgenic mouse model for the simultaneous monitoring of ANF and BNP gene activity during heart development and disease. Cardiovasc. Res. 101, 78–86 (2014). PubMed DOI
Friedman, P. L., Stewart, J. R., Fenoglio, J. J. & Wit, A. L. Survival of subendocardial Purkinje fibers after extensive myocardial infarction in dogs. In vitro and in vivo correlations. Circ. Res. 33, 597–611 (1973). PubMed DOI
Garcia-Bustos, V. et al. Changes in the spatial distribution of the Purkinje network after acute myocardial infarction in the pig. PLoS ONE 14, 1–17 (2019). DOI
Wang, H. et al. Electrophysiologic conservation of epicardial conduction dynamics after myocardial infarction and natural heart regeneration in newborn piglets. Front. Cardiovasc. Med. 9, 1–10 (2022).
Watanabe, H. et al. Purkinje cardiomyocytes of the adult ventricular conduction system are highly diploid but not uniquely regenerative. J. Cardiovasc. Dev. Dis. 10, 161 (2023). PubMed PMC
Rentschler, S. et al. Myocardial notch signaling reprograms cardiomyocytes to a conduction-like phenotype. Circulation 126, 1058–1066 (2012). PubMed DOI PMC
Darehzereshki, A. et al. Differential regenerative capacity of neonatal mouse hearts after cryoinjury. Dev. Biol. 399, 91–99 (2015). PubMed DOI
Haubner, B. J., Schuetz, T. & Penninger, J. M. A reproducible protocol for neonatal ischemic injury and cardiac regeneration in neonatal mice. Basic Res. Cardiol. 111, 1–10 (2016). DOI
Porrello, E. R. et al. Transient regeneration potential of the neonatal mouse heart. Science 331, 1078–1080 (2011). PubMed DOI PMC
Saker, D. M., Walsh-Sukys, M., Spector, M. & Zahka, K. G. Cardiac recovery and survival after neonatal myocardial infarction. Pediatr. Cardiol. 18, 139–142 (1997). PubMed DOI
Choquet, C. et al. Nkx2-5 loss of function in the His-Purkinje system hampers its maturation and leads to mechanical dysfunction. J Cardiovasc. Dev. Dis. 10, 194 (2023). PubMed PMC
Maury, P. et al. Cardiac phenotype and long-term follow-up of patients with mutations in NKX2-5 gene. J. Am. Coll. Cardiol. 68, 2389–2390 (2016). PubMed DOI
Logantha, S. J. R. J. et al. Remodeling of the Purkinje network in congestive heart failure in the rabbit. Circ. Hear. Fail. 14, E007505 (2021).
Harris, B. S. et al. Remodeling of the peripheral cardiac conduction system in response to pressure overload. AJP Hear. Circ. Physiol. 302, H1712–H1725 (2012). DOI
Blom, J. N., Lu, X., Arnold, P. & Feng, Q. Myocardial infarction in neonatal mice, a model of cardiac regeneration. J. Vis. Exp. 2016, 1–12 (2016).
Beyer, S., Kelly, R. G. & Miquerol, L. Inducible Cx40-Cre expression in the cardiac conduction system and arterial endothelial cells. Genesis 49, 83–91 (2011). PubMed DOI
Srinivas, S. et al. Cre reporter strains produced by targeted insertion of EYFP and ECFP into the ROSA26 locus. BMC Dev. Biol. 1, 1–8 (2001). DOI
Madisen, L. et al. A robust and high-throughput Cre reporting and characterization. Nat. Neurosci. 13, 133–140 (2010). PubMed DOI
Snippert, H. J. et al. Intestinal crypt homeostasis results from neutral competition between symmetrically dividing Lgr5 stem cells. Cell 143, 134–144 (2010). PubMed DOI
Saga, Y. et al. MesP1 is expressed in the heart precursor cells and required for the formation of a single heart tube. Development 126, 3437–3447 (1999). PubMed DOI
Tanaka, M., Chen, Z., Bartunkova, S., Yamasaki, N. & Izumo, S. The cardiac homeobox gene Csx/Nkx2.5 lies genetically upstream of multiple genes essential for heart development. Development 126, 1269–1280 (1999). PubMed DOI
Frankish, A. et al. GENCODE reference annotation for the human and mouse genomes. Nucleic Acids Res. 47, D766–D773 (2019). PubMed DOI
Yates, A. D. et al. Ensembl 2020. Nucleic Acids Res. 48, D682–D688 (2020). PubMed
Marçais, G. & Kingsford, C. A fast, lock-free approach for efficient parallel counting of occurrences of k-mers. Bioinformatics 27, 764–770 (2011). PubMed DOI PMC
Gans, J. D. & Wolinsky, M. Improved assay-dependent searching of nucleic acid sequence databases. Nucleic Acids Res. 36, 1–5 (2008). DOI
Rodriguez, J. M. et al. APPRIS 2017: principal isoforms for multiple gene sets. Nucleic Acids Res. 46, D213–D217 (2018). PubMed DOI
Bravo González-Blas, C. et al. SCENIC PubMed DOI PMC
De La Rosa, A. J. et al. Functional suppression of Kcnq1 leads to early sodium channel remodelling and cardiac conduction system dysmorphogenesis. Cardiovasc. Res. 98, 504–514 (2013). PubMed DOI
Kolesová, H., Olejníčková, V., Kvasilová, A., Gregorovičová, M. & Sedmera, D. Tissue clearing and imaging methods for cardiovascular development. iScience 24, 1–25 (2021). DOI
Boulgakoff, L. & Miquerol, L. Participation of ventricular trabeculae in neonatal cardiac regeneration leads to ectopic recruitment of Purkinje-like cells. Zenodo https://doi.org/10.5281/zenodo.12773891 (2024).