Identification of a hybrid myocardial zone in the mammalian heart after birth

. 2017 Jul 20 ; 8 (1) : 87. [epub] 20170720

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid28729659

Grantová podpora
DP1 LM012179 NLM NIH HHS - United States
R01 HL116461 NHLBI NIH HHS - United States

Odkazy

PubMed 28729659
PubMed Central PMC5519540
DOI 10.1038/s41467-017-00118-1
PII: 10.1038/s41467-017-00118-1
Knihovny.cz E-zdroje

Noncompaction cardiomyopathy is characterized by the presence of extensive trabeculations, which could lead to heart failure and malignant arrhythmias. How trabeculations resolve to form compact myocardium is poorly understood. Elucidation of this process is critical to understanding the pathophysiology of noncompaction disease. Here we use genetic lineage tracing to mark the Nppa+ or Hey2+ cardiomyocytes as trabecular and compact components of the ventricular wall. We find that Nppa+ and Hey2+ cardiomyocytes, respectively, from the endocardial and epicardial zones of the ventricular wall postnatally. Interposed between these two postnatal layers is a hybrid zone, which is composed of cells derived from both the Nppa+ and Hey2+ populations. Inhibition of the fetal Hey2+ cell contribution to the hybrid zone results in persistence of excessive trabeculations in postnatal heart. Our findings indicate that the expansion of Hey2+ fetal compact component, and its contribution to the hybrid myocardial zone, are essential for normal formation of the ventricular walls.Fetal trabecular muscles in the heart undergo a poorly described morphogenetic process that results into a solidified compact myocardium after birth. Tian et al. show that cardiomyocytes in the fetal compact layer also contribute to this process, forming a hybrid myocardial zone that is composed of cells derived from both trabecular and compact layers.

Cardiology Department Zhongshan Hospital Fudan University Shanghai 200032 China

Cardiovascular and Metabolic Diseases Innovative Medicines and Early Clinical Development Biotech Unit AstraZeneca Mölndal 43183 Sweden

Department of Cardiology Children's Hospital Boston 300 Longwood Avenue Boston Massachusetts 02115 USA

Department of Cardiology The 1st Affiliated Hospital School of Medicine Zhejiang University 79 Qingchun Road Hangzhou Zhejiang 310003 China

Department of Cardiovascular Medicine Southern Medical University Affiliated Fengxian Hospital Shanghai 201499 China

Department of Neurosurgery Huashan Hospital State Key Laboratory of Medical Neurobiology Institutes of Brain Science and Shanghai Medical College Fudan University Shanghai 200032 China

Department of Pharmacology School of Basic Medical Sciences Tianjin Medical University Tianjin 300070 China

Division of Cardiovascular Medicine Department of Medicine Stanford Cardiovascular Institute Stanford University School of Medicine Stanford Caliornia 94305 USA

Harvard Stem Cell Institute Harvard University Cambridge Massachusetts 02138 USA

Institute of Anatomy 1st Faculty of Medicine Charles University; Institute of Physiology The Czech Academy of Sciences Prague 12800 Czech Republic

Institute of Genetic Medicine Newcastle University Newcastle upon Tyne NE1 7RU UK

Key Laboratory of Nutrition and Metabolism Institute for Nutritional Sciences Shanghai Institutes for Biological Sciences Chinese Academy of Sciences University of Chinese Academy of Sciences Shanghai 200031 China

Key Laboratory of Regenerative Medicine of Ministry of Education Institute of Aging and Regenerative Medicine Jinan University Guangzhou 510632 China

School of Life Science and Technology Shanghai Tech University Shanghai 201210 China

State Key Laboratory of Cardiovascular Disease Fuwai Hospital National Center for Cardiovascular Disease Chinese Academy of Medical Sciences and Peking Union Medical College Beijing 100037 China

State Key Laboratory of Genetic Engineering School of Life Sciences Fudan University Shanghai 200433 China

The State Key Laboratory of Cell Biology CAS Center for Excellence in Molecular Cell Science Shanghai Institute of Biochemistry and Cell Biology Chinese Academy of Sciences University of Chinese Academy of Sciences Shanghai 200031 China

Komentář v

PubMed

Zobrazit více v PubMed

Ben-Shachar G, Arcilla R, Lucas R, Manasek F. Ventricular trabeculations in the chick embryo heart and their contribution to ventricular and muscular septal development. Circ. Res. 1985;57:759–766. doi: 10.1161/01.RES.57.5.759. PubMed DOI

Moorman A, Christoffels V. Cardiac chamber formation: development, genes, and evolution. Physiol. Rev. 2003;83:1223–1267. doi: 10.1152/physrev.00006.2003. PubMed DOI

Staudt D, Stainier D. Uncovering the molecular and cellular mechanisms of heart development using the zebrafish. Annu. Rev. Genet. 2012;46:397–418. doi: 10.1146/annurev-genet-110711-155646. PubMed DOI PMC

Han P, et al. Coordinating cardiomyocyte interactions to direct ventricular chamber morphogenesis. Nature. 2016;534:700–704. doi: 10.1038/nature18310. PubMed DOI PMC

Li J, et al. Single-cell lineage tracing reveals that oriented cell division contributes to trabecular morphogenesis and regional specification. Cell Rep. 2016;15:158–170. doi: 10.1016/j.celrep.2016.03.012. PubMed DOI PMC

Sedmera D, Pexieder T, Vuillemin M, Thompson RP, Anderson RH. Developmental patterning of the myocardium. Anat. Rec. 2000;258:319–337. doi: 10.1002/(SICI)1097-0185(20000401)258:4<319::AID-AR1>3.0.CO;2-O. PubMed DOI

Chin T, Perloff J, Williams R, Jue K, Mohrmann R. Isolated noncompaction of left ventricular myocardium. A study of eight cases. Circulation. 1990;82:507–513. doi: 10.1161/01.CIR.82.2.507. PubMed DOI

Towbin JA, Lorts A, Jefferies JL. Left ventricular non-compaction cardiomyopathy. Lancet. 2015;386:813–825. doi: 10.1016/S0140-6736(14)61282-4. PubMed DOI

Oechslin EN, Attenhofer Jost CH, Rojas JR, Kaufmann PA, Jenni R. Long-term follow-up of 34 adults with isolated left ventricular noncompaction: a distinct cardiomyopathy with poor prognosis. J. Am. Coll. Cardiol. 2000;36:493–500. doi: 10.1016/S0735-1097(00)00755-5. PubMed DOI

Stollberger C, et al. Frequency of stroke and embolism in left ventricular hypertrabeculation/noncompaction. Am. J. Cardiol. 2011;108:1021–1023. doi: 10.1016/j.amjcard.2011.05.039. PubMed DOI

Greutmann M, et al. Predictors of adverse outcome in adolescents and adults with isolated left ventricular noncompaction. Am. J. Cardiol. 2012;109:276–281. doi: 10.1016/j.amjcard.2011.08.043. PubMed DOI

Jenni R, Wyss CA, Oechslin EN, Kaufmann PA. Isolated ventricular noncompaction is associated with coronary microcirculatory dysfunction. J. Am. Coll. Cardiol. 2002;39:450–454. doi: 10.1016/S0735-1097(01)01765-X. PubMed DOI

Finsterer J, Stollberger C. Left ventricular noncompaction requires the neurologist. J. Am. Soc. Echocardiogr. 2004;17:811–812. doi: 10.1016/j.echo.2004.04.009. PubMed DOI

Anderson RH. The relationship between the positions of the left ventricular papillary muscles and the direction of the QRS axis. J. Electrocardiol. 2016;49:675–679. doi: 10.1016/j.jelectrocard.2016.07.012. PubMed DOI

Petersen SE, et al. Left ventricular non-compaction: insights from cardiovascular magnetic resonance imaging. J. Am. Coll. Cardiol. 2005;46:101–105. doi: 10.1016/j.jacc.2005.03.045. PubMed DOI

Hoedemaekers YM, et al. The importance of genetic counseling, DNA diagnostics, and cardiologic family screening in left ventricular noncompaction cardiomyopathy. Circ. Cardiovasc. Genet. 2010;3:232–239. doi: 10.1161/CIRCGENETICS.109.903898. PubMed DOI

Luxan, G., et al. Mutations in the NOTCH pathway regulator MIB1 cause left ventricular noncompaction cardiomyopathy. Nat. Med. 19, 193–201 (2013). PubMed

Chen X, et al. Knockout of SRC-1 and SRC-3 in mice decreases cardiomyocyte proliferation and causes a noncompaction cardiomyopathy phenotype. Int. J. Biol. Sci. 2015;11:1056–1072. doi: 10.7150/ijbs.12408. PubMed DOI PMC

Kodo K, et al. iPSC-derived cardiomyocytes reveal abnormal TGF-beta signalling in left ventricular non-compaction cardiomyopathy. Nat. Cell Biol. 2016;18:1031–1042. doi: 10.1038/ncb3411. PubMed DOI PMC

Kirby, M. Cardiac development Vol. 8, 103–117 (Oxford University Press, 2007).

Koibuchi N, Chin M. CHF1/Hey2 plays a pivotal role in left ventricular maturation through suppression of ectopic atrial gene expression. Circ. Res. 2007;100:850–855. doi: 10.1161/01.RES.0000261693.13269.bf. PubMed DOI

Furth PA, et al. Temporal control of gene expression in transgenic mice by a tetracycline-responsive promoter. Proc. Natl Acad. Sci. USA. 1994;91:9302–9306. doi: 10.1073/pnas.91.20.9302. PubMed DOI PMC

Tumbar T, et al. Defining the epithelial stem cell niche in skin. Science. 2004;303:359–363. doi: 10.1126/science.1092436. PubMed DOI PMC

Perl A, Wert S, Nagy A, Lobe C, Whitsett J. Early restriction of peripheral and proximal cell lineages during formation of the lung. Proc. Natl Acad. Sci. USA. 2002;99:10482–10487. doi: 10.1073/pnas.152238499. PubMed DOI PMC

Madisen L, et al. A robust and high-throughput Cre reporting and characterization system for the whole mouse brain. Nat. Neurosci. 2010;13:133–140. doi: 10.1038/nn.2467. PubMed DOI PMC

Anderson RH, Smerup M, Sanchez-Quintana D, Loukas M, Lunkenheimer PP. The three-dimensional arrangement of the myocytes in the ventricular walls. Clin. Anat. 2009;22:64–76. doi: 10.1002/ca.20645. PubMed DOI

Kuscu C, Arslan S, Singh R, Thorpe J, Adli M. Genome-wide analysis reveals characteristics of off-target sites bound by the Cas9 endonuclease. Nat. Biotechnol. 2014;32:677–683. doi: 10.1038/nbt.2916. PubMed DOI

Tian X, et al. De novo formation of a distinct coronary vascular population in neonatal heart. Science. 2014;345:90–94. doi: 10.1126/science.1251487. PubMed DOI PMC

Red-Horse K, Ueno H, Weissman I, Krasnow M. Coronary arteries form by developmental reprogramming of venous cells. Nature. 2010;464:549–553. doi: 10.1038/nature08873. PubMed DOI PMC

Wu B, et al. Endocardial cells form the coronary arteries by angiogenesis through myocardial-endocardial VEGF signaling. Cell. 2012;151:1083–1096. doi: 10.1016/j.cell.2012.10.023. PubMed DOI PMC

Chen HI, et al. The sinus venosus contributes to coronary vasculature through VEGFC-stimulated angiogenesis. Development. 2014;141:4500–4512. doi: 10.1242/dev.113639. PubMed DOI PMC

Tian X, Pu WT, Zhou B. Cellular origin and developmental program of coronary angiogenesis. Circ. Res. 2015;116:515–530. doi: 10.1161/CIRCRESAHA.116.305097. PubMed DOI PMC

Zhang H, et al. Genetic lineage tracing identifies endocardial origin of liver vasculature. Nat. Genet. 2016;46:537–543. doi: 10.1038/ng.3536. PubMed DOI

He W, et al. Adipose-specific peroxisome proliferator-activated receptor gamma knockout causes insulin resistance in fat and liver but not in muscle. Proc. Natl Acad. Sci. USA. 2003;100:15712–15717. doi: 10.1073/pnas.2536828100. PubMed DOI PMC

He L, Tian X, Zhang H, Wythe J, Zhou B. Fabp4-CreER lineage tracing revealstwo distinctive coronary vascular populations. J. Cell Mol. Med. 2014;18:2152–2156. doi: 10.1111/jcmm.12415. PubMed DOI PMC

Snippert H, et al. Intestinal crypt homeostasis results from neutral competition between symmetrically dividing Lgr5 stem cells. Cell. 2010;143:134–144. doi: 10.1016/j.cell.2010.09.016. PubMed DOI

Heallen T, et al. Hippo pathway inhibits Wnt signaling to restrain cardiomyocyte proliferation and heart size. Science. 2011;332:458–461. doi: 10.1126/science.1199010. PubMed DOI PMC

Xin M, et al. Hippo pathway effector Yap promotes cardiac regeneration. Proc. Natl Acad. Sci. USA. 2013;110:13839–13844. doi: 10.1073/pnas.1313192110. PubMed DOI PMC

Yu W, et al. GATA4 regulates Fgf16 to promote heart repair after injury. Development. 2016;143:936–949. doi: 10.1242/dev.130971. PubMed DOI

D’Amato G, et al. Sequential Notch activation regulates ventricular chamber development. Nat. Cell Biol. 2016;18:7–20. doi: 10.1038/ncb3280. PubMed DOI PMC

D’Amato G, Luxan G, de la Pompa JL. Notch signalling in ventricular chamber development and cardiomyopathy. FEBS J. 2016;283:4223–4237. doi: 10.1111/febs.13773. PubMed DOI

Chen H, et al. BMP10 is essential for maintaining cardiac growth during murine cardiogenesis. Development. 2004;131:2219–2231. doi: 10.1242/dev.01094. PubMed DOI PMC

Tian X, et al. Peritruncal coronary endothelial cells contribute to proximal coronary artery stems and their aortic orifices in the mouse heart. PLoS ONE. 2013;8:e80857. doi: 10.1371/journal.pone.0080857. PubMed DOI PMC

Schlegelmilch K, et al. Yap1 acts downstream of alpha-catenin to control epidermal proliferation. Cell. 2011;144:782–795. doi: 10.1016/j.cell.2011.02.031. PubMed DOI PMC

Liu P, Jenkins N, Copeland N. A highly efficient recombineering-based method for generating conditional knockout mutations. Genome Res. 2003;13:476–484. doi: 10.1101/gr.749203. PubMed DOI PMC

Jung S, et al. In vivo depletion of CD11c+dendritic cells abrogates priming of CD8+T cells by exogenous cell-associated antigens. Immunity. 2002;17:211–220. doi: 10.1016/S1074-7613(02)00365-5. PubMed DOI PMC

Indra A, et al. Temporally-controlled site-specific mutagenesis in the basal layer of the epidermis: comparison of the recombinase activity of the tamoxifen-inducible Cre-ER(T) and Cre-ER(T2) recombinases. Nucleic Acids Res. 1999;27:4324–4327. doi: 10.1093/nar/27.22.4324. PubMed DOI PMC

Liu Q, et al. c-kit(+) cells adopt vascular endothelial but not epithelial cell fates during lung maintenance and repair. Nat. Med. 2015;21:866–868. doi: 10.1038/nm.3888. PubMed DOI

Yang H, et al. One-step generation of mice carrying reporter and conditional alleles by CRISPR/Cas-mediated genome engineering. Cell. 2013;154:1370–1379. doi: 10.1016/j.cell.2013.08.022. PubMed DOI PMC

DeRuiter M, Gittenberger-De Groot A, Wenink A, Poelmann R, Mentink M. In normal development pulmonary veins are connected to the sinus venosus segment in the left atrium. Anat. Rec. 1995;243:84–92. doi: 10.1002/ar.1092430110. PubMed DOI

Wilkinson, D. In Situ Hybridization: A Practical Approach. (Oxford University Press, 1992).

Pu W, et al. Mfsd2a+hepatocytes repopulate the liver during injury and regeneration. Nat. Commun. 2016;7:13369. doi: 10.1038/ncomms13369. PubMed DOI PMC

Zhang H, et al. Genetic lineage tracing identifies endocardial origin of liver vasculature. Nat. Genet. 2016;48:537–543. doi: 10.1038/ng.3536. PubMed DOI

Liu Q, et al. Genetic targeting of sprouting angiogenesis using Apln-CreER. Nat. Commun. 2015;6:6020. doi: 10.1038/ncomms7020. PubMed DOI PMC

Tian X, et al. Subepicardial endothelial cells invade the embryonic ventricle wall to form coronary arteries. Cell Res. 2013;23:1075–1090. doi: 10.1038/cr.2013.83. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...