Identification of a hybrid myocardial zone in the mammalian heart after birth
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
DP1 LM012179
NLM NIH HHS - United States
R01 HL116461
NHLBI NIH HHS - United States
PubMed
28729659
PubMed Central
PMC5519540
DOI
10.1038/s41467-017-00118-1
PII: 10.1038/s41467-017-00118-1
Knihovny.cz E-zdroje
- MeSH
- atriální natriuretický faktor MeSH
- buněčný rodokmen MeSH
- kardiomyocyty metabolismus MeSH
- kardiomyopatie vrozené embryologie metabolismus MeSH
- myokard metabolismus patologie MeSH
- myši MeSH
- natriuretický peptid typu C metabolismus MeSH
- novorozená zvířata MeSH
- organogeneze MeSH
- proteinové prekurzory metabolismus MeSH
- represorové proteiny metabolismus MeSH
- srdce embryologie růst a vývoj MeSH
- srdeční komory embryologie růst a vývoj metabolismus patologie MeSH
- transkripční faktory bHLH metabolismus MeSH
- vrozené srdeční vady embryologie metabolismus MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- atriální natriuretický faktor MeSH
- Hey2 protein, mouse MeSH Prohlížeč
- natriuretický peptid typu C MeSH
- Nppa protein, mouse MeSH Prohlížeč
- proteinové prekurzory MeSH
- represorové proteiny MeSH
- transkripční faktory bHLH MeSH
Noncompaction cardiomyopathy is characterized by the presence of extensive trabeculations, which could lead to heart failure and malignant arrhythmias. How trabeculations resolve to form compact myocardium is poorly understood. Elucidation of this process is critical to understanding the pathophysiology of noncompaction disease. Here we use genetic lineage tracing to mark the Nppa+ or Hey2+ cardiomyocytes as trabecular and compact components of the ventricular wall. We find that Nppa+ and Hey2+ cardiomyocytes, respectively, from the endocardial and epicardial zones of the ventricular wall postnatally. Interposed between these two postnatal layers is a hybrid zone, which is composed of cells derived from both the Nppa+ and Hey2+ populations. Inhibition of the fetal Hey2+ cell contribution to the hybrid zone results in persistence of excessive trabeculations in postnatal heart. Our findings indicate that the expansion of Hey2+ fetal compact component, and its contribution to the hybrid myocardial zone, are essential for normal formation of the ventricular walls.Fetal trabecular muscles in the heart undergo a poorly described morphogenetic process that results into a solidified compact myocardium after birth. Tian et al. show that cardiomyocytes in the fetal compact layer also contribute to this process, forming a hybrid myocardial zone that is composed of cells derived from both trabecular and compact layers.
Cardiology Department Zhongshan Hospital Fudan University Shanghai 200032 China
Harvard Stem Cell Institute Harvard University Cambridge Massachusetts 02138 USA
Institute of Genetic Medicine Newcastle University Newcastle upon Tyne NE1 7RU UK
School of Life Science and Technology Shanghai Tech University Shanghai 201210 China
Zobrazit více v PubMed
Ben-Shachar G, Arcilla R, Lucas R, Manasek F. Ventricular trabeculations in the chick embryo heart and their contribution to ventricular and muscular septal development. Circ. Res. 1985;57:759–766. doi: 10.1161/01.RES.57.5.759. PubMed DOI
Moorman A, Christoffels V. Cardiac chamber formation: development, genes, and evolution. Physiol. Rev. 2003;83:1223–1267. doi: 10.1152/physrev.00006.2003. PubMed DOI
Staudt D, Stainier D. Uncovering the molecular and cellular mechanisms of heart development using the zebrafish. Annu. Rev. Genet. 2012;46:397–418. doi: 10.1146/annurev-genet-110711-155646. PubMed DOI PMC
Han P, et al. Coordinating cardiomyocyte interactions to direct ventricular chamber morphogenesis. Nature. 2016;534:700–704. doi: 10.1038/nature18310. PubMed DOI PMC
Li J, et al. Single-cell lineage tracing reveals that oriented cell division contributes to trabecular morphogenesis and regional specification. Cell Rep. 2016;15:158–170. doi: 10.1016/j.celrep.2016.03.012. PubMed DOI PMC
Sedmera D, Pexieder T, Vuillemin M, Thompson RP, Anderson RH. Developmental patterning of the myocardium. Anat. Rec. 2000;258:319–337. doi: 10.1002/(SICI)1097-0185(20000401)258:4<319::AID-AR1>3.0.CO;2-O. PubMed DOI
Chin T, Perloff J, Williams R, Jue K, Mohrmann R. Isolated noncompaction of left ventricular myocardium. A study of eight cases. Circulation. 1990;82:507–513. doi: 10.1161/01.CIR.82.2.507. PubMed DOI
Towbin JA, Lorts A, Jefferies JL. Left ventricular non-compaction cardiomyopathy. Lancet. 2015;386:813–825. doi: 10.1016/S0140-6736(14)61282-4. PubMed DOI
Oechslin EN, Attenhofer Jost CH, Rojas JR, Kaufmann PA, Jenni R. Long-term follow-up of 34 adults with isolated left ventricular noncompaction: a distinct cardiomyopathy with poor prognosis. J. Am. Coll. Cardiol. 2000;36:493–500. doi: 10.1016/S0735-1097(00)00755-5. PubMed DOI
Stollberger C, et al. Frequency of stroke and embolism in left ventricular hypertrabeculation/noncompaction. Am. J. Cardiol. 2011;108:1021–1023. doi: 10.1016/j.amjcard.2011.05.039. PubMed DOI
Greutmann M, et al. Predictors of adverse outcome in adolescents and adults with isolated left ventricular noncompaction. Am. J. Cardiol. 2012;109:276–281. doi: 10.1016/j.amjcard.2011.08.043. PubMed DOI
Jenni R, Wyss CA, Oechslin EN, Kaufmann PA. Isolated ventricular noncompaction is associated with coronary microcirculatory dysfunction. J. Am. Coll. Cardiol. 2002;39:450–454. doi: 10.1016/S0735-1097(01)01765-X. PubMed DOI
Finsterer J, Stollberger C. Left ventricular noncompaction requires the neurologist. J. Am. Soc. Echocardiogr. 2004;17:811–812. doi: 10.1016/j.echo.2004.04.009. PubMed DOI
Anderson RH. The relationship between the positions of the left ventricular papillary muscles and the direction of the QRS axis. J. Electrocardiol. 2016;49:675–679. doi: 10.1016/j.jelectrocard.2016.07.012. PubMed DOI
Petersen SE, et al. Left ventricular non-compaction: insights from cardiovascular magnetic resonance imaging. J. Am. Coll. Cardiol. 2005;46:101–105. doi: 10.1016/j.jacc.2005.03.045. PubMed DOI
Hoedemaekers YM, et al. The importance of genetic counseling, DNA diagnostics, and cardiologic family screening in left ventricular noncompaction cardiomyopathy. Circ. Cardiovasc. Genet. 2010;3:232–239. doi: 10.1161/CIRCGENETICS.109.903898. PubMed DOI
Luxan, G., et al. Mutations in the NOTCH pathway regulator MIB1 cause left ventricular noncompaction cardiomyopathy. Nat. Med. 19, 193–201 (2013). PubMed
Chen X, et al. Knockout of SRC-1 and SRC-3 in mice decreases cardiomyocyte proliferation and causes a noncompaction cardiomyopathy phenotype. Int. J. Biol. Sci. 2015;11:1056–1072. doi: 10.7150/ijbs.12408. PubMed DOI PMC
Kodo K, et al. iPSC-derived cardiomyocytes reveal abnormal TGF-beta signalling in left ventricular non-compaction cardiomyopathy. Nat. Cell Biol. 2016;18:1031–1042. doi: 10.1038/ncb3411. PubMed DOI PMC
Kirby, M. Cardiac development Vol. 8, 103–117 (Oxford University Press, 2007).
Koibuchi N, Chin M. CHF1/Hey2 plays a pivotal role in left ventricular maturation through suppression of ectopic atrial gene expression. Circ. Res. 2007;100:850–855. doi: 10.1161/01.RES.0000261693.13269.bf. PubMed DOI
Furth PA, et al. Temporal control of gene expression in transgenic mice by a tetracycline-responsive promoter. Proc. Natl Acad. Sci. USA. 1994;91:9302–9306. doi: 10.1073/pnas.91.20.9302. PubMed DOI PMC
Tumbar T, et al. Defining the epithelial stem cell niche in skin. Science. 2004;303:359–363. doi: 10.1126/science.1092436. PubMed DOI PMC
Perl A, Wert S, Nagy A, Lobe C, Whitsett J. Early restriction of peripheral and proximal cell lineages during formation of the lung. Proc. Natl Acad. Sci. USA. 2002;99:10482–10487. doi: 10.1073/pnas.152238499. PubMed DOI PMC
Madisen L, et al. A robust and high-throughput Cre reporting and characterization system for the whole mouse brain. Nat. Neurosci. 2010;13:133–140. doi: 10.1038/nn.2467. PubMed DOI PMC
Anderson RH, Smerup M, Sanchez-Quintana D, Loukas M, Lunkenheimer PP. The three-dimensional arrangement of the myocytes in the ventricular walls. Clin. Anat. 2009;22:64–76. doi: 10.1002/ca.20645. PubMed DOI
Kuscu C, Arslan S, Singh R, Thorpe J, Adli M. Genome-wide analysis reveals characteristics of off-target sites bound by the Cas9 endonuclease. Nat. Biotechnol. 2014;32:677–683. doi: 10.1038/nbt.2916. PubMed DOI
Tian X, et al. De novo formation of a distinct coronary vascular population in neonatal heart. Science. 2014;345:90–94. doi: 10.1126/science.1251487. PubMed DOI PMC
Red-Horse K, Ueno H, Weissman I, Krasnow M. Coronary arteries form by developmental reprogramming of venous cells. Nature. 2010;464:549–553. doi: 10.1038/nature08873. PubMed DOI PMC
Wu B, et al. Endocardial cells form the coronary arteries by angiogenesis through myocardial-endocardial VEGF signaling. Cell. 2012;151:1083–1096. doi: 10.1016/j.cell.2012.10.023. PubMed DOI PMC
Chen HI, et al. The sinus venosus contributes to coronary vasculature through VEGFC-stimulated angiogenesis. Development. 2014;141:4500–4512. doi: 10.1242/dev.113639. PubMed DOI PMC
Tian X, Pu WT, Zhou B. Cellular origin and developmental program of coronary angiogenesis. Circ. Res. 2015;116:515–530. doi: 10.1161/CIRCRESAHA.116.305097. PubMed DOI PMC
Zhang H, et al. Genetic lineage tracing identifies endocardial origin of liver vasculature. Nat. Genet. 2016;46:537–543. doi: 10.1038/ng.3536. PubMed DOI
He W, et al. Adipose-specific peroxisome proliferator-activated receptor gamma knockout causes insulin resistance in fat and liver but not in muscle. Proc. Natl Acad. Sci. USA. 2003;100:15712–15717. doi: 10.1073/pnas.2536828100. PubMed DOI PMC
He L, Tian X, Zhang H, Wythe J, Zhou B. Fabp4-CreER lineage tracing revealstwo distinctive coronary vascular populations. J. Cell Mol. Med. 2014;18:2152–2156. doi: 10.1111/jcmm.12415. PubMed DOI PMC
Snippert H, et al. Intestinal crypt homeostasis results from neutral competition between symmetrically dividing Lgr5 stem cells. Cell. 2010;143:134–144. doi: 10.1016/j.cell.2010.09.016. PubMed DOI
Heallen T, et al. Hippo pathway inhibits Wnt signaling to restrain cardiomyocyte proliferation and heart size. Science. 2011;332:458–461. doi: 10.1126/science.1199010. PubMed DOI PMC
Xin M, et al. Hippo pathway effector Yap promotes cardiac regeneration. Proc. Natl Acad. Sci. USA. 2013;110:13839–13844. doi: 10.1073/pnas.1313192110. PubMed DOI PMC
Yu W, et al. GATA4 regulates Fgf16 to promote heart repair after injury. Development. 2016;143:936–949. doi: 10.1242/dev.130971. PubMed DOI
D’Amato G, et al. Sequential Notch activation regulates ventricular chamber development. Nat. Cell Biol. 2016;18:7–20. doi: 10.1038/ncb3280. PubMed DOI PMC
D’Amato G, Luxan G, de la Pompa JL. Notch signalling in ventricular chamber development and cardiomyopathy. FEBS J. 2016;283:4223–4237. doi: 10.1111/febs.13773. PubMed DOI
Chen H, et al. BMP10 is essential for maintaining cardiac growth during murine cardiogenesis. Development. 2004;131:2219–2231. doi: 10.1242/dev.01094. PubMed DOI PMC
Tian X, et al. Peritruncal coronary endothelial cells contribute to proximal coronary artery stems and their aortic orifices in the mouse heart. PLoS ONE. 2013;8:e80857. doi: 10.1371/journal.pone.0080857. PubMed DOI PMC
Schlegelmilch K, et al. Yap1 acts downstream of alpha-catenin to control epidermal proliferation. Cell. 2011;144:782–795. doi: 10.1016/j.cell.2011.02.031. PubMed DOI PMC
Liu P, Jenkins N, Copeland N. A highly efficient recombineering-based method for generating conditional knockout mutations. Genome Res. 2003;13:476–484. doi: 10.1101/gr.749203. PubMed DOI PMC
Jung S, et al. In vivo depletion of CD11c+dendritic cells abrogates priming of CD8+T cells by exogenous cell-associated antigens. Immunity. 2002;17:211–220. doi: 10.1016/S1074-7613(02)00365-5. PubMed DOI PMC
Indra A, et al. Temporally-controlled site-specific mutagenesis in the basal layer of the epidermis: comparison of the recombinase activity of the tamoxifen-inducible Cre-ER(T) and Cre-ER(T2) recombinases. Nucleic Acids Res. 1999;27:4324–4327. doi: 10.1093/nar/27.22.4324. PubMed DOI PMC
Liu Q, et al. c-kit(+) cells adopt vascular endothelial but not epithelial cell fates during lung maintenance and repair. Nat. Med. 2015;21:866–868. doi: 10.1038/nm.3888. PubMed DOI
Yang H, et al. One-step generation of mice carrying reporter and conditional alleles by CRISPR/Cas-mediated genome engineering. Cell. 2013;154:1370–1379. doi: 10.1016/j.cell.2013.08.022. PubMed DOI PMC
DeRuiter M, Gittenberger-De Groot A, Wenink A, Poelmann R, Mentink M. In normal development pulmonary veins are connected to the sinus venosus segment in the left atrium. Anat. Rec. 1995;243:84–92. doi: 10.1002/ar.1092430110. PubMed DOI
Wilkinson, D. In Situ Hybridization: A Practical Approach. (Oxford University Press, 1992).
Pu W, et al. Mfsd2a+hepatocytes repopulate the liver during injury and regeneration. Nat. Commun. 2016;7:13369. doi: 10.1038/ncomms13369. PubMed DOI PMC
Zhang H, et al. Genetic lineage tracing identifies endocardial origin of liver vasculature. Nat. Genet. 2016;48:537–543. doi: 10.1038/ng.3536. PubMed DOI
Liu Q, et al. Genetic targeting of sprouting angiogenesis using Apln-CreER. Nat. Commun. 2015;6:6020. doi: 10.1038/ncomms7020. PubMed DOI PMC
Tian X, et al. Subepicardial endothelial cells invade the embryonic ventricle wall to form coronary arteries. Cell Res. 2013;23:1075–1090. doi: 10.1038/cr.2013.83. PubMed DOI PMC
The changing morphology of the ventricular walls of mouse and human with increasing gestation