Transgenic rat with ubiquitous expression of angiotensin-(1-7)-producing fusion protein: a new tool to study the role of protective arm of the renin-angiotensin system in the pathophysiology of cardio-renal diseases
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články
PubMed
39537982
PubMed Central
PMC11700845
DOI
10.1038/s41440-024-01995-y
PII: 10.1038/s41440-024-01995-y
Knihovny.cz E-zdroje
- Klíčová slova
- Angiotensin II, Angiotensin-(1-7), Renin-angiotensin system, TG7371 transgenic rat,
- MeSH
- angiotensin I * metabolismus MeSH
- angiotensin II * MeSH
- kardiovaskulární nemoci metabolismus genetika MeSH
- krevní tlak fyziologie MeSH
- krysa rodu Rattus MeSH
- ledviny metabolismus MeSH
- nemoci ledvin metabolismus genetika MeSH
- peptidové fragmenty * metabolismus MeSH
- potkani Sprague-Dawley * MeSH
- potkani transgenní * MeSH
- protoonkogen Mas MeSH
- receptor angiotensinu typ 1 genetika metabolismus MeSH
- receptory spřažené s G-proteiny genetika metabolismus MeSH
- rekombinantní fúzní proteiny metabolismus MeSH
- renin-angiotensin systém * fyziologie MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- angiotensin I (1-7) MeSH Prohlížeč
- angiotensin I * MeSH
- angiotensin II * MeSH
- peptidové fragmenty * MeSH
- protoonkogen Mas MeSH
- receptor angiotensinu typ 1 MeSH
- receptory spřažené s G-proteiny MeSH
- rekombinantní fúzní proteiny MeSH
The aim of the present study was to assess systemic circulatory and tissue activities of both the classical arm and of the alternative arm of the renin-angiotensin system (RAS) in a new transgenic rat line (TG7371) that expresses angiotensin-(1-7) (ANG 1-7)-producing fusion protein; the results were compared with the activities measured in control transgene-negative Hannover Sprague-Dawley (HanSD) rats. Plasma and tissue concentrations of angiotensin II (ANG II) and ANG 1-7, and kidney mRNA expressions of receptors responsible for biological actions of ANG II and ANG 1-7 [i.e. ANG II type 1 and type 2 (AT1 and AT2) and Mas receptors] were assessed in TG7371 transgene-positive and in HanSD rats. We found that male TG7371 transgene-positive rats exhibited significantly elevated plasma, kidney, heart and lung ANG 1-7 concentrations as compared with control male HanSD rats; by contrast, there was no significant difference in ANG II concentrations and no significant differences in mRNA expression of AT1, AT2 and Mas receptors. In addition, we found that in male TG7371 transgene-positive rats blood pressure was lower than in male HanSD rats. These data indicate that the balance between the classical arm and the alternative arm of the RAS was in male TGR7371 transgene-positive rats markedly shifted in favor of the latter. In conclusion, TG7371 transgene-positive rats represent a new powerful tool to study the long-term role of the alternative arm of the RAS in the pathophysiology and potentially in the treatment of cardio-renal diseases.
Charité University Medicine Berlin Berlin Germany
Department of Cardiology Institute for Clinical and Experimental Medicine Prague Czech Republic
Department of Pathophysiology 2nd Faculty of Medicine Charles University Prague Czech Republic
Department of Physiology Faculty of Science Charles University Prague Czech Republic
DZHK Partner Site Berlin Berlin Germany
Institute for Biology University of Lübeck Lübeck Germany
Max Delbrück Center for Molecular Medicine in the Helmholtz Association Berlin Germany
Zobrazit více v PubMed
Hall JE, Granger JP, Hall ME. Physiology and pathophysiology of hypertension. In: Albeprn RJ, Caplan MJ, Moe OW editors, Seldin and Giebisch: The Kidney physiology and pathophysiology, 5th ed. Academic Press; 2013, pp. 1319–52.
Harrison-Bernard LM. The renal renin-angiotensin system. Adv Physiol Educ. 2009;33:270–4. PubMed
Savedchuk S, Phachu D, Shankar M, Sparks MA, Harrison-Bernard LM. Targeting Glomerular Hemodynamics for Kidney Protection. Adv Kidney Dis Health. 2023;30:71–84. PubMed
Kobori H, Nangaku M, Navar LG, Nishiyama A. The intrarenal renin-angiotensin system: from physiology to the pathobiology of hypertension and kidney disease. Pharm Rev. 2007;59:251–87. PubMed
Packer M. The neurohormonal hypothesis: a theory to explain the mechanism of disease progression in heart failure. J Am Coll Cardiol. 1992;20:248–54. PubMed
Hartupee J, Mann DL. Neurohormonal activation in heart failure with reduced ejection fraction. Nat Rev Cardiol. 2017;14:30–38. PubMed PMC
Mann DL, Felker GM. Mechanisms and Models in Heart Failure: A Translational Approach. Circ Res. 2021;128:1435–50. PubMed PMC
Triebel H, Castrop H. The renin angiotensin aldosterone system. Pflug Arch. 2024;476:705–13. PubMed PMC
Mancia G, Kreutz R, Brunström M, Burnier M, Grassi G, Januszewicz A, et al. 2023 ESH Guidelines for the management of arterial hypertension. The Task Force for the management of arterial hypertension of the European Society of Hypertension: Endorsed by the International Society of Hypertension (ISH) and the European Renal Association (ERA). J Hypertens. J hypertension. 2023;41:1874–2071. PubMed
Authors/Task Force Members, McDonagh TA, Metra M, Adamo M, Gardner RS, Baumbach A, Böhm M, et al. 2023 Focused Update of the 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: Developed by the task force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC) With the special contribution of the Heart Failure Association (HFA) of the ESC. Eur J Heart Fail. 2024;26:5–17. PubMed
Neumiller JJ, Alicic RZ, Tuttle KR. Incorporating Evidence and Guidelines for Personalized Care of Diabetes and Chronic Kidney Disease. Semin Nephrol. 2023;43:151427. PubMed
Santos RA, Brosnihan KB, Chappell MC, Pesquero J, Chernicky CL, Greene LJ, et al. Converting enzyme activity and angiotensin metabolism in the dog brainstem. Hypertension. 1988;11:I153–I157. PubMed
Ferrario CM, Santos RA, Brosnihan KB, Block CH, Schiavone MT, Khosla MC, et al. A hypothesis regarding the function of angiotensin peptides in the brain. Clin Exp Hypertens A. 1988;10:107–21. PubMed
Trask AJ, Ferrario CM. Angiotensin-(1-7): pharmacology and new perspectives in cardiovascular treatments. Cardiovasc Drug Rev. 2007;25:162–74. PubMed
Santos RAS, Sampaio WO, Alzamora AC, Motta-Santos D, Alenina N, Bader M, et al. The ACE2/Angiotensin-(1-7)/MAS Axis of the Renin-Angiotensin System: Focus on Angiotensin-(1-7). Physiol Rev. 2018;98:505–53. PubMed PMC
Bader M, Steckelings UM, Alenina N, Santos RAS, Ferrario CM. Alternative Renin-Angiotensin System. Hypertension. 2024;81:964–76. PubMed PMC
Forrester SJ, Booz GW, Sigmund CD, Coffman TM, Kawai T, Rizzo V, et al. Angiotensin II Signal Transduction: An Update on Mechanisms of Physiology and Pathophysiology. Physiol Rev. 2018;98:1627–738. PubMed PMC
Eguchi S, Torimoto K, Adebiyi A, Kanthakumar P, Bomfim GF, Wenceslau CF, et al. Milestone Papers on Signal Transduction Mechanisms of Hypertension and Its Complications. Hypertension. 2024;81:977–90. PubMed PMC
Santos RA, Ferreira AJ, Nadu AP, Braga AN, de Almeida AP, Campagnole-Santos MJ, et al. Expression of an angiotensin-(1-7)-producing fusion protein produces cardioprotective effects in rats. Physiol Genomics. 2004;17:292–9. PubMed
Bürgelová M, Vanourková Z, Thumová M, Dvorák P, Opocenský M, Kramer HJ, et al. Impairment of the angiotensin-converting enzyme 2-angiotensin-(1-7)-Mas axis contributes to the acceleration of two-kidney, one-clip Goldblatt hypertension. J Hypertens. 2009;27:1988–2000. PubMed
Alves DT, Mendes LF, Sampaio WO, Coimbra-Campos L, Vieira M, Ferreira AJ, et al. Hemodynamic phenotyping of transgenic rats with ubiquitous expression of an angiotensin-(1-7)-producing fusion protein. Clin Sci. 2021;35:2197–216. PubMed
Reue K, Wiese CB. Illuminating the Mechanisms Underlying Sex Differences in Cardiovascular Disease. Circ Res. 2022;130:1747–62. PubMed PMC
Regitz-Zagrosek V, Gebhard C. Gender medicine: effects of sex and gender on cardiovascular disease manifestation and outcomes. Nat Rev Cardiol. 2023;20:236–47. PubMed PMC
Wenger NK. The Feminine Face of Heart Disease 2024. Circulation. 2024;149:489–91. PubMed
Bello NA, Cheng S. Where Do We Go From Here: Reflections on a Century in Women’s Cardiovascular Health Research, 1924-2024. Circ Res. 2024;134:247–51. PubMed PMC
Clayton JA, Gaugh MD. Sex as a Biological Variable in Cardiovascular Diseases: JACC Focus Seminar 1/7. J Am Coll Cardiol. 2022;79:1388–97. PubMed
Drury ER, Wu J, Gigliotti JC, Le TH. Sex differences in blood pressure regulation and hypertension: renal, hemodynamic, and hormonal mechanisms. Physiol Rev. 2024;104:199–251. PubMed PMC
Červenka L, Melenovský V, Husková Z, Škaroupková P, Nishiyama A, Sadowski J. Inhibition of soluble epoxide hydrolase counteracts the development of renal dysfunction and progression of congestive heart failure in Ren-2 transgenic hypertensive rats with aorto-caval fistula. Clin Exp Pharm Physiol. 2015;42:795–807. PubMed
Husková Z, Kramer HJ, Vaňourková Z, Červenka L. Effects of changes in sodium balance on plasma and kidney angiotensin II levels in anesthetized and conscious Ren-2 transgenic rats. J Hypertens. 2006;24:517–27. PubMed
Husková Z, Kopkan L, Červenková L, Doleželová Š, Vaňourková Z, Škaroupková P, et al. Intrarenal alterations of the angiotensin-converting type 2/angiotensin 1-7 complex of the renin-angiotensin system do not alter the course of malignant hypertension in Cyp1a1-Ren-2 transgenic rats. Clin Exp Pharm Physiol. 2016;43:438–49. PubMed
Honetschlagerová Z, Gawrys O, Jíchová Š, Škaroupková P, Kikerlová S, Vaňourková Z, et al. Renal Sympathetic Denervation Attenuates Congestive Heart Failure in Angiotensin II-Dependent Hypertension: Studies with Ren-2 Transgenic Hypertensive Rats with Aortocaval Fistula. Kidney Blood Press Res. 2021;46:95–113. PubMed
Gawrys O, Husková Z, Škaroupková P, Honetschlägerová Z, Vaňourková Z, Kikerlová S, et al. The treatment with sGC stimulator improves survival of hypertensive rats in response to volume-overload induced by aorto-caval fistula. Naunyn Schmiedebergs Arch Pharm. 2023;396:3757–73. PubMed PMC
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25:402–8. PubMed
Jíchová Š, Gawryś O, Kompanowska-Jezierska E, Sadowski J, Melenovský V, Hošková L, et al. Kidney Response to Chemotherapy-Induced Heart Failure: mRNA Analysis in Normotensive and Ren-2 Transgenic Hypertensive Rats. Int J Mol Sci. 2021;22:8475. PubMed PMC
Kala P, Miklovič M, Jíchová Š, Škaroupková P, Vaňourková Z, Maxová H, et al. Effects of Epoxyeicosatrienoic Acid-Enhancing Therapy on the Course of Congestive Heart Failure in Angiotensin II-Dependent Rat Hypertension: From mRNA Analysis towards Functional In Vivo Evaluation. Biomedicines. 2021;9:1053. PubMed PMC
Kurtz TW, Griffin KA, Bidani AK, Davisson RL, Hall JE. Recommendation for blood pressure measurements in humans and experimental animals. Part 2. Blood pressure measurements in experimental animals. Hypertension. 2005;45:299–310. PubMed
Harrison DG, Bader M, Lerman LO, Fink G, Karumanchi SA, Reckelhoff JF, et al. Tail-Cuff Versus Radiotelemetry to Measure Blood Pressure in Mice and Rats. Hypertension. 2024;81:3–5. PubMed PMC
Kujal P, Chábová VČ, Vernerová Z, Walkowska A, Kompanowska-Jezierska E, Sadowski J, et al. Similar renoprotection after renin-angiotensin-dependent and -independent antihypertensive therapy in 5/6-nephrectomized Ren-2 transgenic rats: are there blood pressure-independent effects? Clin Exp Pharm Physiol. 2010;37:1159–69. PubMed
Kujal P, Čertíková Chábová V, Škaroupková P, Husková Z, Vernerová Z, Kramer HJ, et al. Inhibition of soluble epoxide hydrolase is renoprotective in 5/6 nephrectomized Ren-2 transgenic hypertensive rats. Clin Exp Pharm Physiol. 2014;41:227–37. PubMed PMC
Čertíková Chábová V, Vernerová Z, Kujal P, Husková Z, Škaroupková P, Tesař V, et al. Addition of ET(A) receptor blockade increases renoprotection provided by renin-angiotensin system blockade in 5/6 nephrectomized Ren-2 transgenic rats. Life Sci. 2014;118:297–305. PubMed
Kala P, Vaňourková Z, Škaroupková P, Kompanowska-Jezierska E, Sadowski J, Walkowska A, et al. Endothelin type A receptor blockade increases renoprotection in congestive heart failure combined with chronic kidney disease: Studies in 5/6 nephrectomized rats with aorto-caval fistula. Biomed Pharmacother. 2023;158:114157. PubMed
Salazar F, Reverte V, Saez F, Loria A, Llinas MT, Salazar FJ. Age- and sodium-sensitive hypertension and sex-dependent renal changes in rats with a reduced nephron number. Hypertension. 2008;51:1184–9. PubMed
Reverte V, Rodriguez F, Oltra L, Moreno JM, Llinás MT, Shea CM, et al. SGLT2 inhibition potentiates the cardiovascular, renal, and metabolic effects of sGC stimulation in hypertensive rats with prolonged exposure to high-fat diet. Am J Physiol Heart Circ Physiol. 2022;322:H523–H536. PubMed PMC
Vacková Š, Kikerlová S, Melenovsky V, Kolář F, Imig JD, Kompanowska-Jezierska E, et al. Altered Renal Vascular Responsiveness to Vasoactive Agents in Rats with Angiotensin II-Dependent Hypertension and Congestive Heart Failure. Kidney Blood Press Res. 2019;44:792–809. PubMed PMC
Crowley SD, Navar LG, Prieto MC, Gurley SB, Coffman TM. Kidney Renin-Angiotensin System: Lost in a RAS Cascade. Hypertension. 2024;81:682–6. PubMed PMC
Cobo Marcos M, de la Espriella R, Gayán Ordás J. Sex differences in Cardiorenal Syndrome: Insights from CARDIOREN Registry. Curr Heart Fail Rep. 2023;20:157–67. PubMed
Mayne KJ, Sullivan MK, Lees JS. Sex and gender differences in the management of chronic kidney disease and hypertension. J Hum Hypertens. 2023;37:649–53. PubMed PMC
Chesnaye NC, Carrero JJ, Hecking M, Jager KJ. Differences in the epidemiology, management and outcomes of kidney disease in men and women. Nat Rev Nephrol. 2024;20:7–20. PubMed
Bader M. ACE2, angiotensin-(1–7), and Mas: the other side of the coin. Pflug Arch. 2013;465:79–85. PubMed
Yamazato M, Yamazato Y, Sun C, Diez-Freire C, Raizada MK. Overexpression of angiotensin-converting enzyme 2 in the rostral ventrolateral medulla causes long-term decrease in blood pressure in the spontaneously hypertensive rats. Hypertension. 2007;49:926–31. PubMed
Rentzsch B, Todiras M, Iliescu R, Popova E, Campos LA, Oliveira ML, et al. Transgenic angiotensin-converting enzyme 2 overexpression in vessels of SHRSP rats reduces blood pressure and improves endothelial function. Hypertension. 2008;52:967–73. PubMed
Sanad AM, Qadri F, Popova E, Rodrigues AF, Heinbokel T, Quach S, et al. Transgenic angiotensin-converting enzyme 2 overexpression in the rat vasculature protects kidneys from ageing-induced injury. Kidney Int. 2023;104:293–304. PubMed
Lazartigues E, Llorens-Cortes C, Danser AHJ. New Approaches Targeting the Renin-Angiotensin System: Inhibition of Brain Aminopeptidase A, ACE2 Ubiquitination, and Angiotensinogen. Can J Cardiol. 2023;39:1900–12. PubMed PMC
Crowley SD, Gurley SB, Herrera MJ, Ruiz P, Griffiths R, Kumar AP, et al. Angiotensin II causes hypertension and cardiac hypertrophy through its receptors in the kidney. Proc Natl Acad Sci USA. 2006;103:17985–90. PubMed PMC
Cantley L. Signal transduction. In: Boron WF, Boulpaep WF. Medical Physiology: a cellular and molecular approch, 2nd ed. Elsevier Saunder; 2009, pp.48–74.
Liu S, Anderson PJ, Rajagopal S, Lefkowitz RJ, Rockman HA. G Protein-Coupled Receptors: A Century of Research and Discovery. Circ Res. 2024;135:174–97. PubMed PMC
Harrison-Bernard LM, El-Dahr SS, O’Leary DF, Navar LG. Regulation of angiotensin II type 1 receptor mRNA and protein in angiotensin II-induced hypertension. Hypertension. 1999;33:340–6. PubMed
Harrison-Bernard LM, Zhuo J, Kobori H, Ohishi M, Navar LGIntrarenalAT. receptor and ACE binding in ANG II-induced hypertensive rats. Am J Physiol Ren Physiol. 2002;282:F19–F25. PubMed PMC
Kopkan L, Kramer HJ, Husková Z, Vanourková Z, Bäcker A, Bader M, et al. Plasma and kidney angiotensin II levels and renal functional responses to AT(1) receptor blockade in hypertensive Ren-2 transgenic rats. J Hypertens. 2004;22:819–25. PubMed
Honetschlägerová Z, Hejnová L, Novotný J, Marek A, Červenka L. Effects of Renal Denervation on the Enhanced Renal Vascular Responsiveness to Angiotensin II in High-Output Heart Failure: Angiotensin II Receptor Binding Assessment and Functional Studies in Ren-2 Transgenic Hypertensive Rats. Biomedicines. 2021;9:1803. PubMed PMC
Modrall JG, Quinones MJ, Frankhouse JH, Hsueh WA, Weaver FA, Kedes L. Upregulation of angiotensin II type 1 receptor gene expression in chronic renovascular hypertension. J Surg Res. 1995;59:135–40. PubMed
Bessa ASM, Jesus ÉF, Nunes ADC, Pontes C, Lacerda IS, Costa JM, et al. Stimulation of the ACE2/Ang-(1-7)/Mas axis in hypertensive pregnant rats attenuates cardiovascular dysfunction in adult male offspring. Hypertens Res. 2019;42:1883–93. PubMed
Pontes CNR, Bessa ASM, Macedo LM, Ferreira-Junior MD, Cavalcante K, Campos HM, et al. Angiotensin-(1-7) Treatment Early in Life Prevents Cardiac Hypertrophy in Adult Hypertensive Rats. J Cardiovasc Pharmacol 2024;83: 457–65. 10.1097/FJC.0000000000001530. PubMed
Steckelings UM, Widdop RE, Sturrock ED, Lubbe L, Hussain T, Kaschina E, et al. The Angiotensin AT2 Receptor: From a Binding Site to a Novel Therapeutic Target. Pharm Rev. 2022;74:1051–135. PubMed PMC
Kangussu LM, Almeida-Santos AF, Fernandes LF, Alenina N, Bader M, Santos R, et al. Transgenic rat with overproduction of ubiquitous angiotensin-(1-7) presents neuroprotection in a model of ischemia and reperfusion. Brain Res Bull. 2023;192:184–91. PubMed