Cell-Based Reporter System for High-Throughput Screening of MicroRNA Pathway Inhibitors and Its Limitations
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
29535760
PubMed Central
PMC5835079
DOI
10.3389/fgene.2018.00045
Knihovny.cz E-zdroje
- Klíčová slova
- Argonaute, high-throughput screening, let-7, miR-30, miRNA,
- Publikační typ
- časopisecké články MeSH
MicroRNAs (miRNAs) are small RNAs repressing gene expression. They contribute to many physiological processes and pathologies. Consequently, strategies for manipulation of the miRNA pathway are of interest as they could provide tools for experimental or therapeutic interventions. One of such tools could be small chemical compounds identified through high-throughput screening (HTS) with reporter assays. While a number of chemical compounds have been identified in such high-throughput screens, their application potential remains elusive. Here, we report our experience with cell-based HTS of a library of 12,816 chemical compounds to identify miRNA pathway modulators. We used human HeLa and mouse NIH 3T3 cell lines with stably integrated or transiently expressed luciferase reporters repressed by endogenous miR-30 and let-7 miRNAs and identified 163 putative miRNA inhibitors. We report that compounds relieving miRNA-mediated repression via stress induction are infrequent; we have found only two compounds that reproducibly induced stress granules and relieved miRNA-targeted reporter repression. However, we have found that this assay type readily yields non-specific (miRNA-independent) stimulators of luciferase reporter activity. Furthermore, our data provide partial support for previously published miRNA pathway modulators; the most notable intersections were found among anthracyclines, dopamine derivatives, flavones, and stilbenes. Altogether, our results underscore the importance of appropriate negative controls in development of small compound inhibitors of the miRNA pathway. This particularly concerns validation strategies, which would greatly profit from assays that fundamentally differ from the routinely employed miRNA-targeted reporter assays.
CZ OPENSCREEN Institute of Molecular Genetics of the Czech Academy of Sciences Prague Czechia
Institute of Molecular Genetics of the Czech Academy of Sciences Prague Czechia
Zobrazit více v PubMed
Asada K., Canestrari E., Paroo Z. (2016). A druggable target for rescuing microRNA defects. Bioorg. Med. Chem. Lett. 26, 4942–4946. 10.1016/j.bmcl.2016.09.019 PubMed DOI
Bartel D. P. (2009). MicroRNAs: target recognition and regulatory functions. Cell 136, 215–233. 10.1016/j.cell.2009.01.002 PubMed DOI PMC
Bhattacharyya S. N., Habermacher R., Martine U., Closs E. I., Filipowicz W. (2006). Relief of microRNA-mediated translational repression in human cells subjected to stress. Cell 125, 1111–1124. 10.1016/j.cell.2006.04.031 PubMed DOI
Bose D., Jayaraj G., Suryawanshi H., Agarwala P., Pore S. K., Banerjee R., et al. . (2012). The tuberculosis drug streptomycin as a potential cancer therapeutic: inhibition of miR-21 function by directly targeting its precursor. Angew. Chem. Int. Ed. Engl. 51, 1019–1023. 10.1002/anie.201106455 PubMed DOI
Bose D., Jayaraj G. G., Kumar S., Maiti S. (2013). A molecular-beacon-based screen for small molecule inhibitors of miRNA maturation. ACS Chem. Biol. 8, 930–938. 10.1021/cb300650y PubMed DOI
Brideau C., Gunter B., Pikounis B., Liaw A. (2003). Improved statistical methods for hit selection in high-throughput screening. J. Biomol. Screen. 8, 634–647. 10.1177/1087057103258285 PubMed DOI
Britton R. G., Kovoor C., Brown K. (2015). Direct molecular targets of resveratrol: identifying key interactions to unlock complex mechanisms. Ann. N. Y. Acad. Sci. 1348, 124–133. 10.1111/nyas.12796 PubMed DOI
Chiu Y. L., Dinesh C. U., Chu C. Y., Ali A., Brown K. M., Cao H., et al. . (2005). Dissecting RNA-interference pathway with small molecules. Chem. Biol. 12, 643–648. 10.1016/j.chembiol.2005.04.016 PubMed DOI
Connelly C. M., Deiters A. (2014). Identification of inhibitors of microRNA function from small molecule screens. Methods Mol. Biol. 1095, 147–156. 10.1007/978-1-62703-703-7_12 PubMed DOI
Connelly C. M., Thomas M., Deiters A. (2012). High-throughput luciferase reporter assay for small-molecule inhibitors of microRNA function. J. Biomol. Screen. 17, 822–828. 10.1177/1087057112439606 PubMed DOI PMC
Deiters A. (2010). Small molecule modifiers of the microRNA and RNA interference pathway. AAPS J. 12, 51–60. 10.1208/s12248-009-9159-3 PubMed DOI PMC
Di Giorgio A., Tran T. P., Duca M. (2016). Small-molecule approaches toward the targeting of oncogenic miRNAs: roadmap for the discovery of RNA modulators. Future Med. Chem. 8, 803–816. 10.4155/fmc-2016-0018 PubMed DOI
Dougherty D. C., Sanders M. M. (2005). Comparison of the responsiveness of the pGL3 and pGL4 luciferase reporter vectors to steroid hormones. Biotechniques 39, 203–207. 10.2144/05392ST02 PubMed DOI
Dueck A., Meister G. (2014). Assembly and function of small RNA - argonaute protein complexes. Biol. Chem. 395, 611–629. 10.1515/hsz-2014-0116 PubMed DOI
Ha M., Kim V. N. (2014). Regulation of microRNA biogenesis. Nat. Rev. Mol. Cell biol. 15, 509–524. 10.1038/nrm3838 PubMed DOI
Hagiwara K., Kosaka N., Yoshioka Y., Takahashi R. U., Takeshita F., Ochiya T. (2012). Stilbene derivatives promote Ago2-dependent tumour-suppressive microRNA activity. Sci. Rep. 2:314. 10.1038/srep00314 PubMed DOI PMC
Hutvágner G., Zamore P. D. (2002). A microRNA in a multiple-turnover RNAi enzyme complex. Science 297, 2056–2060. 10.1126/science.1073827 PubMed DOI
Jonas S., Izaurralde E. (2015). Towards a molecular understanding of microRNA-mediated gene silencing. Nat. Rev. Genet. 16, 421–433. 10.1038/nrg3965 PubMed DOI
Kedersha N., Anderson P. (2007). Mammalian stress granules and processing bodies. Methods Enzymol. 431, 61–81. 10.1016/S0076-6879(07)31005-7 PubMed DOI
Kedersha N. L., Gupta M., Li W., Miller I., Anderson P. (1999). RNA-binding proteins TIA-1 and TIAR link the phosphorylation of eIF-2α to the assembly of mammalian stress granules. J. Cell Biol. 147, 1431–1442. 10.1083/jcb.147.7.1431 PubMed DOI PMC
Krol J., Loedige I., Filipowicz W. (2010). The widespread regulation of microRNA biogenesis, function and decay. Nat. Rev. Genet. 11, 597–610. 10.1038/nrg2843 PubMed DOI
Lee H., Han S., Kwon C. S., Lee D. (2016). Biogenesis and regulation of the let-7 miRNAs and their functional implications. Protein Cell 7, 100–113. 10.1007/s13238-015-0212-y PubMed DOI PMC
Liu J., Carmell M. A., Rivas F. V., Marsden C. G., Thomson J. M., Song J. J., et al. . (2004). Argonaute2 is the catalytic engine of mammalian RNAi. Science 305, 1437–1441. 10.1126/science.1102513 PubMed DOI
Ma J., Flemr M., Stein P., Berninger P., Malik R., Zavolan M., et al. . (2010). MicroRNA activity is suppressed in mouse oocytes. Curr. Biol. 20, 265–270. 10.1016/j.cub.2009.12.042 PubMed DOI PMC
Maiti M., Nauwelaerts K., Herdewijn P. (2012). Pre-microRNA binding aminoglycosides and antitumor drugs as inhibitors of Dicer catalyzed microRNA processing. Bioorg. Med. Chem. Lett. 22, 1709–1711. 10.1016/j.bmcl.2011.12.103 PubMed DOI
Meister G., Landthaler M., Patkaniowska A., Dorsett Y., Teng G., Tuschl T. (2004). Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs. Mol. Cell 15, 185–197. 10.1016/j.molcel.2004.07.007 PubMed DOI
Melo S., Villanueva A., Moutinho C., Davalos V., Spizzo R., Ivan C., et al. . (2011). Small molecule enoxacin is a cancer-specific growth inhibitor that acts by enhancing TAR RNA-binding protein 2-mediated microRNA processing. Proc. Natl. Acad. Sci. U.S.A. 108, 4394–4399. 10.1073/pnas.1014720108 PubMed DOI PMC
Nejepinska J., Malik R., Moravec M., Svoboda P. (2012). Deep sequencing reveals complex spurious transcription from transiently transfected plasmids. PLoS ONE 7:e43283. 10.1371/journal.pone.0043283 PubMed DOI PMC
Niwa H., Yamamura K., Miyazaki J. (1991). Efficient selection for high-expression transfectants with a novel eukaryotic vector. Gene 108, 193–199. 10.1016/0378-1119(91)90434-D PubMed DOI
Okabe M., Ikawa M., Kominami K., Nakanishi T., Nishimune Y. (1997). 'Green mice' as a source of ubiquitous green cells. FEBS Lett. 407, 313–319. 10.1016/S0014-5793(97)00313-X PubMed DOI
Pasquinelli A. E., Reinhart B. J., Slack F., Martindale M. Q., Kuroda M. I., Maller B., et al. . (2000). Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature 408, 86–89. 10.1038/35040556 PubMed DOI
Pillai R. S., Artus C. G., Filipowicz W. (2004). Tethering of human ago proteins to mRNA mimics the miRNA-mediated repression of protein synthesis. RNA 10, 1518–1525. 10.1261/rna.7131604 PubMed DOI PMC
Pillai R. S., Bhattacharyya S. N., Artus C. G., Zoller T., Cougot N., Basyuk E., et al. . (2005). Inhibition of translational initiation by Let-7 MicroRNA in human cells. Science 309, 1573–1576. 10.1126/science.1115079 PubMed DOI
Podolska K. (2015). Development of Chemical Regulators of microRNA and RNAi Pathways in Department of Cell Biology. thesis Ph.D., Charles University, Prague, 157.
Podolska K., Sedlak D., Bartunek P., Svoboda P. (2014). Fluorescence-based high-throughput screening of dicer cleavage activity. J. Biomol. Screen. 19, 417–426. 10.1177/1087057113497400 PubMed DOI
Protter D. S., Parker R. (2016). Principles and properties of stress granules. Trends Cell Biol. 26, 668–679. 10.1016/j.tcb.2016.05.004 PubMed DOI PMC
Shan G., Li Y., Zhang J., Li W., Szulwach K. E., Duan R., et al. . (2008). A small molecule enhances RNA interference and promotes microRNA processing. Nat. Biotechnol. 26, 933–940. 10.1038/nbt.1481 PubMed DOI PMC
Shibata C., Ohno M., Otsuka M., Kishikawa T., Goto K., Muroyama R., et al. . (2014). The flavonoid apigenin inhibits hepatitis C virus replication by decreasing mature microRNA122 levels. Virology 462–463, 42–48. 10.1016/j.virol.2014.05.024 PubMed DOI
Shum D., Bhinder B., Radu C., Calder P., Ramirez C. N., Djaballah H. (2012). An image-based biosensor assay strategy to screen for modulators of the microRNA 21 biogenesis pathway. Comb. Chem. High Throughput Screen. 15, 529–541. 10.2174/138620712801619131 PubMed DOI PMC
Skuta C., Bartunek P., Svozil D. (2014). InCHlib - interactive cluster heatmap for web applications. J. Cheminform. 6:44. 10.1186/s13321-014-0044-4 PubMed DOI PMC
Song J. J., Smith S. K., Hannon G. J., Joshua-Tor L. (2004). Crystal structure of Argonaute and its implications for RISC slicer activity. Science 305, 1434–1437. 10.1126/science.1102514 PubMed DOI
Svoboda P. (2015). A toolbox for miRNA analysis. FEBS Lett. 589, 1694–1701. 10.1016/j.febslet.2015.04.054 PubMed DOI
Svoboda P., Flemr M. (2010). The role of miRNAs and endogenous siRNAs in maternal-to-zygotic reprogramming and the establishment of pluripotency. EMBO Rep. 11, 590–597. 10.1038/embor.2010.102 PubMed DOI PMC
Takahashi K., Tatsumi N., Fukami T., Yokoi T., Nakajima M. (2014). Integrated analysis of rifampicin-induced microRNA and gene expression changes in human hepatocytes. Drug Metab. Pharmacokinet. 29, 333–340. 10.2133/dmpk.DMPK-13-RG-114 PubMed DOI
Tan G. S., Chiu C. H., Garchow B. G., Metzler D., Diamond S. L., Kiriakidou M. (2012). Small molecule inhibition of RISC loading. ACS Chem. Biol. 7, 403–410. 10.1021/cb200253h PubMed DOI PMC
Tran T. P. A., Vo D. D., Di Giorgio A., Duca M. (2015). Ribosome-targeting antibiotics as inhibitors of oncogenic microRNAs biogenesis: old scaffolds for new perspectives in RNA targeting. Bioorg. Med. Chem. 23, 5334–5344. 10.1016/j.bmc.2015.07.062 PubMed DOI
Ward J. H. (1963). Hierarchical grouping to optimize an objective function. J. Am. Stat. Assoc. 58, 236–244. 10.1080/01621459.1963.10500845 DOI
Watashi K., Yeung M. L., Starost M. F., Hosmane R. S., Jeang K. T. (2010). Identification of small molecules that suppress microRNA function and reverse tumorigenesis. J. Biol. Chem. 285, 24707–24716. 10.1074/jbc.M109.062976 PubMed DOI PMC
Wee L. M., Flores-Jasso C. F., Salomon W. E., Zamore P. D. (2012). Argonaute divides its RNA guide into domains with distinct functions and RNA-binding properties. Cell 151, 1055–1067. 10.1016/j.cell.2012.10.036 PubMed DOI PMC
Wightman B., Ha I., Ruvkun G. (1993). Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 75, 855–862. 10.1016/0092-8674(93)90530-4 PubMed DOI
Zeng Y., Cullen B. R. (2003). Sequence requirements for micro RNA processing and function in human cells. RNA 9, 112–123. 10.1261/rna.2780503 PubMed DOI PMC
Zeng Y., Cullen B. R. (2004). Structural requirements for pre-microRNA binding and nuclear export by Exportin 5. Nucleic Acids Res. 32, 4776–4785. 10.1093/nar/gkh824 PubMed DOI PMC
Zeng Y., Wagner E. J., Cullen B. R. (2002). Both natural and designed micro RNAs can inhibit the expression of cognate mRNAs when expressed in human cells. Mol. Cell 9, 1327–1333. 10.1016/S1097-2765(02)00541-5 PubMed DOI
Zeng Y., Yi R., Cullen B. R. (2005). Recognition and cleavage of primary microRNA precursors by the nuclear processing enzyme Drosha. EMBO J. 24, 138–148. 10.1038/sj.emboj.7600491 PubMed DOI PMC