Modulation of left ventricular hypertrophy in spontaneously hypertensive rats by acetylcholinesterase and ACE inhibitors: physiological, biochemical, and proteomic studies
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
39355349
PubMed Central
PMC11443425
DOI
10.3389/fcvm.2024.1390547
Knihovny.cz E-zdroje
- Klíčová slova
- SHR and WKY rats, acetylcholinesterase, cholinergic signaling, hypertension, myocardial proteome, pyridostigmine, trandolapril,
- Publikační typ
- časopisecké články MeSH
BACKGROUND: The consequences at the molecular level and the mechanisms involved in a possible cardioprotective effect of antihypertensive treatment are not yet fully understood. Here, the efficacy of pyridostigmine (PYR) and trandolapril (TRA) as antihypertensive and antihypertrophic agents was investigated and compared in hypertensive SHR and normotensive WKY rats. In parallel, we investigated the effects of these drugs on myocardial β-adrenergic and cholinergic signaling pathways and protein expression profiles. METHODS: Age-matched male SHR and WKY rats were chronically (8 weeks) treated with PYR or TRA in drinking water. Blood pressure (BP) and heart rate (HR) were monitored telemetrically prior to tissue sampling for biochemical analysis. Baroreceptor reflex sensitivity (BRS) and methylatropine HR response as a measure of vagal tone were evaluated in separate groups of animals. RESULTS: PYR slightly lowered BP and HR in SHR rats during the dark phase of the day, while TRA effectively reduced BP during the light and dark phases without affecting HR. PYR enhanced BRS and improved vagal tone. There were no significant alterations in myocardial β-adrenergic and cholinergic signaling, with the exception of decreased forskolin-stimulated adenylyl cyclase (AC) activity in SHR rats, which was restored by TRA. Proteomic analysis revealed numerous differences induced by both treatments. Notable were changes in TGFβ-related signaling pathways as well as proteins involved in modifying hemodynamic parameters and cardiac hypertrophy. CONCLUSIONS: PYR is able to slightly decrease BP and HR in SHR rats but effectively increase BRS through vagal potentiation. The specific differences in protein expression profiles in rat myocardium induced by treatment with PYR and TRA reflect different mechanisms of action of these two agents at the molecular level.
Department of Physiology Faculty of Science Charles University Prague Czechia
Institute of Physiology Czech Academy of Sciences Prague Czechia
Zobrazit více v PubMed
Sorrentino MJ. The evolution from hypertension to heart failure. Heart Fail Clin. (2019) 15(4):447–53. 10.1016/j.hfc.2019.06.005 PubMed DOI
Thayer JF, Yamamoto SS, Brosschot JF. The relationship of autonomic imbalance, heart rate variability and cardiovascular disease risk factors. Int J Cardiol. (2010) 141(2):122–31. 10.1016/j.ijcard.2009.09.543 PubMed DOI
Mancia G, Grassi G. The autonomic nervous system and hypertension. Circ Res. (2014) 114(11):1804–14. 10.1161/CIRCRESAHA.114.302524 PubMed DOI
Dzau VJ, Antman EM, Black HR, Hayes DL, Manson JE, Plutzky J, et al. The cardiovascular disease continuum validated: clinical evidence of improved patient outcomes: part II: clinical trial evidence (acute coronary syndromes through renal disease) and future directions. Circulation. (2006) 114(25):2871–91. 10.1161/CIRCULATIONAHA.106.655761 PubMed DOI
Head RJ. Hypernoradrenergic innervation: its relationship to functional and hyperplastic changes in the vasculature of the spontaneously hypertensive rat. Blood Vessels. (1989) 26(1):1–20. PubMed
Pinterova M, Kunes J, Zicha J. Altered neural and vascular mechanisms in hypertension. Physiol Res. (2011) 60(3):381–402. 10.33549/physiolres.932189 PubMed DOI
Vavrinova A, Behuliak M, Vaneckova I, Zicha J. The abnormalities of adrenomedullary hormonal system in genetic hypertension: their contribution to altered regulation of blood pressure. Physiol Res. (2021) 70(3):307–26. 10.33549/physiolres.934687 PubMed DOI PMC
Judy WV, Farrell SK. Arterial baroreceptor reflex control of sympathetic nerve activity in the spontaneously hypertensive rat. Hypertension. (1979) 1(6):605–14. 10.1161/01.hyp.1.6.605 PubMed DOI
Head GA, Adams MA. Time course of changes in baroreceptor reflex control of heart rate in conscious SHR and WKY: contribution of the cardiac vagus and sympathetic nerves. Clin Exp Pharmacol Physiol. (1988) 15(4):289–92. 10.1111/j.1440-1681.1988.tb01075.x PubMed DOI
Behuliak M, Bencze M, Polgarova K, Kunes J, Vaneckova I, Zicha J. Hemodynamic response to gabapentin in conscious spontaneously hypertensive rats. Hypertension. (2018) 72(3):676–85. 10.1161/HYPERTENSIONAHA.118.09909 PubMed DOI
Turnbull F, Blood Pressure Lowering Treatment Trialists, C. Effects of different blood-pressure-lowering regimens on major cardiovascular events: results of prospectively-designed overviews of randomised trials. Lancet. (2003) 362(9395):1527–35. 10.1016/s0140-6736(03)14739-3 PubMed DOI
Heran BS, Wong MM, Heran IK, Wright JM. Blood pressure lowering efficacy of angiotensin converting enzyme (ACE) inhibitors for primary hypertension. Cochrane Database Syst Rev. (2008) 2008(4):CD003823. 10.1002/14651858.CD003823.pub2 PubMed DOI PMC
Satoh S, Ueda Y, Suematsu N, Oyama J, Kadokami T, Sugano M, et al. Beneficial effects of angiotensin-converting enzyme inhibition on sarcoplasmic reticulum function in the failing heart of the dahl rat. Circ J. (2003) 67(8):705–11. 10.1253/circj.67.705 PubMed DOI
Kala P, Sedlakova L, Skaroupkova P, Kopkan L, Vanourkova Z, Taborsky M, et al. Effect of angiotensin-converting enzyme blockade, alone or combined with blockade of soluble epoxide hydrolase, on the course of congestive heart failure and occurrence of renal dysfunction in ren-2 transgenic hypertensive rats with aorto-caval fistula. Physiol Res. (2018) 67(3):401–15. 10.33549/physiolres.933757 PubMed DOI PMC
Jarkovska D, Miklovic M, Sviglerova J, Cervenka L, Skaroupkova P, Melenovsky V, et al. Effects of trandolapril on structural, contractile and electrophysiological remodeling in experimental volume overload heart failure. Front Pharmacol. (2021) 12:729568. 10.3389/fphar.2021.729568 PubMed DOI PMC
Zicha J, Dobesova Z, Behuliak M, Pinterova M, Kunes J, Vaneckova I. Nifedipine-sensitive blood pressure component in hypertensive models characterized by high activity of either sympathetic nervous system or renin-angiotensin system. Physiol Res. (2014) 63(1):13–26. 10.33549/physiolres.932717 PubMed DOI
Osterziel KJ, Rohrig N, Dietz R, Manthey J, Hecht J, Kubler W. Influence of captopril on the arterial baroreceptor reflex in patients with heart failure. Eur Heart J. (1988) 9(10):1137–45. 10.1093/oxfordjournals.eurheartj.a062411 PubMed DOI
Chan YS, Wong TM. Relationship of rostral ventrolateral medullary neurons and angiotensin in the central control of blood pressure. Biol Signals. (1995) 4(3):133–41. 10.1159/000109433 PubMed DOI
Heringer-Walther S, Batista EN, Walther T, Khosla MC, Santos RA, Campagnole-Santos MJ. Baroreflex improvement in shr after ace inhibition involves angiotensin-(1–7). Hypertension. (2001) 37(5):1309–14. 10.1161/01.hyp.37.5.1309 PubMed DOI
Blanco JH, Gastaldi AC, Gardim CB, Araujo JE, Simoes MV, Oliveira LF, et al. Chronic cholinergic stimulation promotes changes in cardiovascular autonomic control in spontaneously hypertensive rats. Auton Neurosci. (2015) 193:97–103. 10.1016/j.autneu.2015.09.002 PubMed DOI
Lataro RM, Silva CA, Tefe-Silva C, Prado CM, Salgado HC. Acetylcholinesterase inhibition attenuates the development of hypertension and inflammation in spontaneously hypertensive rats. Am J Hypertens. (2015) 28(10):1201–8. 10.1093/ajh/hpv017 PubMed DOI
Gardim CB, Veiga AC, Aguilar BA, Philbois SV, Souza HCD. Effects of chronic cholinergic stimulation associated with aerobic physical training on cardiac morphofunctional and autonomic parameters in spontaneously hypertensive rats. Sci Rep. (2021) 11(1):17141. 10.1038/s41598-021-96505-2 PubMed DOI PMC
Soares PP, da Nobrega AC, Ushizima MR, Irigoyen MC. Cholinergic stimulation with pyridostigmine increases heart rate variability and baroreflex sensitivity in rats. Auton Neurosci. (2004) 113(1-2):24–31. 10.1016/j.autneu.2004.05.002 PubMed DOI
Sabino JP, da Silva CA, de Melo RF, Fazan R, Jr, Salgado HC. The treatment with pyridostigmine improves the cardiocirculatory function in rats with chronic heart failure. Auton Neurosci. (2013) 173(1-2):58–64. 10.1016/j.autneu.2012.11.007 PubMed DOI
Lataro RM, Silva CA, Fazan R, Jr, Rossi MA, Prado CM, Godinho RO, et al. Increase in parasympathetic tone by pyridostigmine prevents ventricular dysfunction during the onset of heart failure. Am J Physiol Regul Integr Comp Physiol. (2013) 305(8):R908–16. 10.1152/ajpregu.00102.2013 PubMed DOI
Barboza CA, Fukushima AR, Carrozzi N, Machi JF, Dourado PMM, Mostarda CT, et al. Cholinergic stimulation by pyridostigmine bromide before myocardial infarction prevent cardiac and autonomic dysfunction. Sci Rep. (2019) 9(1):2481. 10.1038/s41598-019-38841-y PubMed DOI PMC
Bandoni RL, Bricher Choque PN, Delle H, de Moraes TL, Porter MHM, da Silva BD, et al. Cholinergic stimulation with pyridostigmine modulates a heart-spleen axis after acute myocardial infarction in spontaneous hypertensive rats. Sci Rep. (2021) 11(1):9563. 10.1038/s41598-021-89104-8 PubMed DOI PMC
Feriani DJ, Coelho-Junior HJ, de Oliveira J, Delbin MA, Mostarda CT, Dourado PMM, et al. Pyridostigmine improves the effects of resistance exercise training after myocardial infarction in rats. Front Physiol. (2018) 9:53. 10.3389/fphys.2018.00053 PubMed DOI PMC
Feriani DJ, Souza GIH, Carrozzi NM, Mostarda C, Dourado PMM, Consolim-Colombo FM, et al. Impact of exercise training associated to pyridostigmine treatment on autonomic function and inflammatory profile after myocardial infarction in rats. Int J Cardiol. (2017) 227:757–65. 10.1016/j.ijcard.2016.10.061 PubMed DOI
Bezerra OC, Franca CM, Rocha JA, Neves GA, Souza PRM, Teixeira Gomes M, et al. Cholinergic stimulation improves oxidative stress and inflammation in experimental myocardial infarction. Sci Rep. (2017) 7(1):13687. 10.1038/s41598-017-14021-8 PubMed DOI PMC
de La Fuente RN, Rodrigues B, Moraes-Silva IC, Souza LE, Sirvente R, Mostarda C, et al. Cholinergic stimulation with pyridostigmine improves autonomic function in infarcted rats. Clin Exp Pharmacol Physiol. (2013) 40(9):610–6. 10.1111/1440-1681.12121 PubMed DOI
Shao Q, Ren B, Zarain-Herzberg A, Ganguly PK, Dhalla NS. Captopril treatment improves the sarcoplasmic reticular Ca(2+) transport in heart failure due to myocardial infarction. J Mol Cell Cardiol. (1999) 31(9):1663–72. 10.1006/jmcc.1999.1000 PubMed DOI
Takeishi Y, Bhagwat A, Ball NA, Kirkpatrick DL, Periasamy M, Walsh RA. Effect of angiotensin-converting enzyme inhibition on protein kinase C and SR proteins in heart failure. Am J Physiol. (1999) 276(1):H53–62. 10.1152/ajpheart.1999.276.1.H53 PubMed DOI
Chevalier B, Heudes D, Heymes C, Basset A, Dakhli T, Bansard Y, et al. Trandolapril decreases prevalence of ventricular ectopic activity in middle-aged SHR. Circulation. (1995) 92(7):1947–53. 10.1161/01.cir.92.7.1947 PubMed DOI
Klevstig M, Manakov D, Kasparova D, Brabcova I, Papousek F, Zurmanova J, et al. Transgenic rescue of defective Cd36 enhances myocardial adenylyl cyclase signaling in spontaneously hypertensive rats. Pflugers Arch. (2013) 465(10):1477–86. 10.1007/s00424-013-1281-5 PubMed DOI
Ricketts JH, Head GA. A five-parameter logistic equation for investigating asymmetry of curvature in baroreflex studies. Am J Physiol. (1999) 277(2):R441–54. 10.1152/ajpregu.1999.277.2.R441 PubMed DOI
Ihnatovych I, Migocka-Patrzalek M, Dukh M, Hofmann WA. Identification and characterization of a novel myosin ic isoform that localizes to the nucleus. Cytoskeleton (Hoboken). (2012) 69(8):555–65. 10.1002/cm.21040 PubMed DOI
Neckar J, Alanova P, Olejnickova V, Papousek F, Hejnova L, Silhavy J, et al. Excess ischemic tachyarrhythmias trigger protection against myocardial infarction in hypertensive rats. Clin Sci (Lond). (2021) 135(17):2143–63. 10.1042/CS20210648 PubMed DOI
Baillard C, Mansier P, Ennezat PV, Mangin L, Medigue C, Swynghedauw B, et al. Converting enzyme inhibition normalizes QT interval in spontaneously hypertensive rats. Hypertension. (2000) 36(3):350–4. 10.1161/01.hyp.36.3.350 PubMed DOI
Head GA, Adams MA. Characterization of the baroreceptor heart rate reflex during development in spontaneously hypertensive rats. Clin Exp Pharmacol Physiol. (1992) 19(8):587–97. 10.1111/j.1440-1681.1992.tb00509.x PubMed DOI
Minami N, Head GA. Relationship between cardiovascular hypertrophy and cardiac baroreflex function in spontaneously hypertensive and stroke-prone rats. J Hypertens. (1993) 11(5):523–33. 10.1097/00004872-199305000-00008 PubMed DOI
Liu L, Lu Y, Bi X, Xu M, Yu X, Xue R, et al. Choline ameliorates cardiovascular damage by improving vagal activity and inhibiting the inflammatory response in spontaneously hypertensive rats. Sci Rep. (2017) 7:42553. 10.1038/srep42553 PubMed DOI PMC
Miyazaki M, Sakonjo H, Takai S. Anti-atherosclerotic effects of an angiotensin converting enzyme inhibitor and an angiotensin II antagonist in cynomolgus monkeys fed a high-cholesterol diet. Br J Pharmacol. (1999) 128(3):523–9. 10.1038/sj.bjp.0702833 PubMed DOI PMC
Ahmad M, White R, Tan J, Huang BS, Leenen FH. Angiotensin-converting enzyme inhibitors, inhibition of brain and peripheral angiotensin-converting enzymes, and left ventricular dysfunction in rats after myocardial infarction. J Cardiovasc Pharmacol. (2008) 51(6):565–72. 10.1097/FJC.0b013e318177090d PubMed DOI
Geng C, Mao C, Wu L, Cheng Y, Liu R, Chen B, et al. Cholinergic signal activated renin angiotensin system associated with cardiovascular changes in the ovine fetus. J Perinat Med. (2010) 38(1):71–6. 10.1515/jpm.2010.009 PubMed DOI PMC
Pontes CNR, Scalzo S, Jesus ICG, Jesus EF, Nunes ADC, Mendonca MM, et al. Angiotensin-(1–7) attenuates the negative inotropic response to acetylcholine in the heart. Peptides. (2022) 158:170862. 10.1016/j.peptides.2022.170862 PubMed DOI
Kawada T, Yamazaki T, Akiyama T, Li M, Zheng C, Shishido T, et al. Angiotensin II attenuates myocardial interstitial acetylcholine release in response to vagal stimulation. Am J Physiol Heart Circ Physiol. (2007) 293(4):H2516–22. 10.1152/ajpheart.00424.2007 PubMed DOI
Sorrentino A, Bagwan N, Linscheid N, Poulsen PC, Kahnert K, Thomsen MB, et al. Beta-blocker/ACE inhibitor therapy differentially impacts the steady state signaling landscape of failing and non-failing hearts. Sci Rep. (2022) 12(1):4760. 10.1038/s41598-022-08534-0 PubMed DOI PMC
Lin YP, Yu WC, Hsu ME, Tsai HC, Liao CC, Lin CH. Comparative proteomic analysis of rat left ventricle in a subtotal nephrectomy model. J Chin Med Assoc. (2015) 78(4):218–28. 10.1016/j.jcma.2014.08.016 PubMed DOI
Brooks WW, Shen SS, Conrad CH, Goldstein RH, Bing OH. Transition from compensated hypertrophy to systolic heart failure in the spontaneously hypertensive rat: structure, function, and transcript analysis. Genomics. (2010) 95(2):84–92. 10.1016/j.ygeno.2009.12.002 PubMed DOI
Bastrup JA, Aalkjaer C, Jepps TA. Identification of novel proteins and mechanistic pathways associated with early-onset hypertension by deep proteomic mapping of resistance arteries. J Biol Chem. (2022) 298(1):101512. 10.1016/j.jbc.2021.101512 PubMed DOI PMC
Depre C, Wang Q, Yan L, Hedhli N, Peter P, Chen L, et al. Activation of the cardiac proteasome during pressure overload promotes ventricular hypertrophy. Circulation. (2006) 114(17):1821–8. 10.1161/CIRCULATIONAHA.106.637827 PubMed DOI
Dickhout JG, Austin RC. Proteasomal regulation of cardiac hypertrophy: is demolition necessary for building? Circulation. (2006) 114(17):1796–8. 10.1161/CIRCULATIONAHA.106.656744 PubMed DOI
Cacciapuoti F. Role of ubiquitin-proteasome system (UPS) in left ventricular hypertrophy (LVH). Am J Cardiovasc Dis. (2014) 4(1):1–5. PubMed PMC
Reho JJ, Guo DF, Morgan DA, Rahmouni K. mTORC1 (mechanistic target of rapamycin complex 1) signaling in endothelial and smooth muscle cells is required for vascular function. Hypertension. (2021) 77(2):594–604. 10.1161/HYPERTENSIONAHA.120.14708 PubMed DOI PMC
Hafizi S, Wang X, Chester AH, Yacoub MH, Proud CG. ANG II activates effectors of mTOR via PI3-K signaling in human coronary smooth muscle cells. Am J Physiol Heart Circ Physiol. (2004) 287(3):H1232–8. 10.1152/ajpheart.00040.2004 PubMed DOI
Kim JA, Jang HJ, Martinez-Lemus LA, Sowers JR. Activation of mTOR/p70S6 kinase by ANG II inhibits insulin-stimulated endothelial nitric oxide synthase and vasodilation. Am J Physiol Endocrinol Metab. (2012) 302(2):E201–8. 10.1152/ajpendo.00497.2011 PubMed DOI PMC
Stuck BJ, Lenski M, Bohm M, Laufs U. Metabolic switch and hypertrophy of cardiomyocytes following treatment with angiotensin II are prevented by AMP-activated protein kinase. J Biol Chem. (2008) 283(47):32562–9. 10.1074/jbc.M801904200 PubMed DOI
Sciarretta S, Forte M, Frati G, Sadoshima J. The complex network of mTOR signalling in the heart. Cardiovasc Res. (2022) 118(2):424–39. 10.1093/cvr/cvab033 PubMed DOI PMC
Xu L, Brink M. mTOR, cardiomyocytes and inflammation in cardiac hypertrophy. Biochim Biophys Acta. (2016) 1863(7 Pt B):1894–903. 10.1016/j.bbamcr.2016.01.003 PubMed DOI
Coffman K, Yang B, Lu J, Tetlow AL, Pelliccio E, Lu S, et al. Characterization of the raptor/4E-BP1 interaction by chemical cross-linking coupled with mass spectrometry analysis. J Biol Chem. (2014) 289(8):4723–34. 10.1074/jbc.M113.482067 PubMed DOI PMC
Shende P, Plaisance I, Morandi C, Pellieux C, Berthonneche C, Zorzato F, et al. Cardiac raptor ablation impairs adaptive hypertrophy, alters metabolic gene expression, and causes heart failure in mice. Circulation. (2011) 123(10):1073–82. 10.1161/CIRCULATIONAHA.110.977066 PubMed DOI