The abnormalities of adrenomedullary hormonal system in genetic hypertension: Their contribution to altered regulation of blood pressure

. 2021 Jul 12 ; 70 (3) : 307-326. [epub] 20210512

Jazyk angličtina Země Česko Médium print-electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid33982588

It is widely accepted that sympathetic nervous system plays a crucial role in the development of hypertension. On the other hand, the role of adrenal medulla (the adrenomedullary component of the sympathoadrenal system) in the development and maintenance of high blood pressure in man as well as in experimental models of hypertension is still controversial. Spontaneously hypertensive rats (SHR) are the most widely used animal model of human essential hypertension characterized by sympathetic hyperactivity. However, the persistence of moderately elevated blood pressure in SHR subjected to sympathectomy neonatally as well as the resistance of adult SHR to the treatment by sympatholytic drugs suggests that other factors (including enhanced activity of the adrenomedullary hormonal system) are involved in the pathogenesis of hypertension of SHR. This review describes abnormalities in adrenomedullary hormonal system of SHR rats starting with the hyperactivity of brain centers regulating sympathetic outflow, through the exaggerated activation of sympathoadrenal preganglionic neurons, to the local changes in chromaffin cells of adrenal medulla. All the above alterations might contribute to the enhanced release of epinephrine and/or norepinephrine from adrenal medulla. Special attention is paid to the alterations in the expression of genes involved in catecholamine biosynthesis, storage, release, reuptake, degradation and adrenergic receptors in chromaffin cells of SHR. The contribution of the adrenomedullary hormonal system to the development and maintenance of hypertension as well as its importance during stressful conditions is also discussed.

Zobrazit více v PubMed

ALLEN AM. Inhibition of the hypothalamic paraventricular nucleus in spontaneously hypertensive rats dramatically reduces sympathetic vasomotor tone. Hypertension. 2002;39:275–280. doi: 10.1161/hy0202.104272. PubMed DOI

AXELROD J, REISINE TD. Stress hormones: their interaction and regulation. Science. 1984;224:452–459. doi: 10.1126/science.6143403. PubMed DOI

BEHULIAK M, BENCZE M, POLGÁROVÁ K, KUNEŠ J, VANĚČKOVÁ I, ZICHA J. Hemodynamic response to gabapentin in conscious spontaneously hypertensive rats. Hypertension. 2018;72:676–685. doi: 10.1161/HYPERTENSIONAHA.118.09909. PubMed DOI

BEHULIAK M, VAVŘÍNOVÁ A, BENCZE M, POLGÁROVÁ K, ERGANG P, KUNEŠ J, VANĚČKOVÁ I, ZICHA J. Ontogenetic changes in contribution of calcium sensitization and calcium entry to blood pressure maintenance of Wistar-Kyoto and spontaneously hypertensive rats. J Hypertens. 2015;33:2443–2454. doi: 10.1097/HJH.0000000000000746. PubMed DOI

BLAKELY RD, EDWARDS RH. Vesicular and plasma membrane transporters for neurotransmitters. Cold Spring Harb Perspect Biol. 2012;4:a005595. doi: 10.1101/cshperspect.a005595. PubMed DOI PMC

BLASCHKO H. The activity of l(−)-dopa decarboxylase. J Physiol. 1942;101:337–349. doi: 10.1113/jphysiol.1942.sp003988. PubMed DOI PMC

BOMFIM GHS, MÉNDEZ-LÓPEZ I, FERNÁNDEZ-MORALES JC, PADÍN JF, JURKIEWICZ A, JURKIEWICZ NH, GARCÍA AG. Electrophysiological properties and augmented catecholamine release from chromaffin cells of WKY and SHR rats contributing to the hypertension development elicited by chronic EtOH consumption. Eur J Pharmacol. 2017;803:65–77. doi: 10.1016/j.ejphar.2017.03.017. PubMed DOI

BORKOWSKI KR. Effect of adrenal demedullation and adrenaline on hypertension development and vascular reactivity in young spontaneously hypertensive rats. J Auton Pharmacol. 1991;11:1–14. doi: 10.1111/j.1474-8673.1991.tb00239.x. PubMed DOI

BORKOWSKI KR, QUINN P. The effect of bilateral adrenal demedullation on vascular reactivity and blood pressure in spontaneously hypertensive rats. Br J Pharmacol. 1983;80:429–437. doi: 10.1111/j.1476-5381.1983.tb10712.x. PubMed DOI PMC

BREDE M, NAGY G, PHILIPP M, SORENSEN JB, LOHSE MJ, HEIN L. Differential control of adrenal and sympathetic catecholamine release by alpha 2-adrenoceptor subtypes. Mol Endocrinol. 2003;17:1640–1646. doi: 10.1210/me.2003-0035. PubMed DOI

BROWN MR, HAUGER R, FISHER LA. Autonomic and cardiovascular effects of corticotropin-releasing factor in the spontaneously hypertensive rat. Brain Res. 1988;441:33–40. doi: 10.1016/0006-8993(88)91380-7. PubMed DOI

BURGOYNE RD. Control of exocytosis in adrenal chromaffin cells. Biochim Biophys Acta. 1991;1071:174–202. doi: 10.1016/0304-4157(91)90024-Q. PubMed DOI

BURNSTOCK G. Purinergic signalling in endocrine organs. Purinergic Signal. 2014;10:189–231. doi: 10.1007/s11302-013-9396-x. PubMed DOI PMC

CALLAHAN TA, MOYNIHAN JA, PIEKUT DT. Central nervous system activation following peripheral chemical sympathectomy: implications for neural-immune interactions. Brain Behav Immun. 1998;12:230–241. doi: 10.1006/brbi.1998.0526. PubMed DOI

CAVADAS C, CÉFAI D, ROSMANINHO-SALGADO J, VIEIRA-COELHO MA, MOURA E, BUSSO N, PEDRAZZINI T, GRAND D, ROTMAN S, WAEBER B, AUBERT JF, GROUZMANN E. Deletion of the neuropeptide Y (NPY) Y1 receptor gene reveals a regulatory role of NPY on catecholamine synthesis and secretion. Proc Natl Acad Sci U S A. 2006;103:10497–10502. doi: 10.1073/pnas.0600913103. PubMed DOI PMC

CESETTI T, HERNÁNDEZ-GUIJO JM, BALDELLI P, CARABELLI V, CARBONE E. Opposite action of beta1- and beta2-adrenergic receptors on Ca(V)1 L-channel current in rat adrenal chromaffin cells. J Neurosci. 2003;23:73–83. doi: 10.1523/JNEUROSCI.23-01-00073.2003. PubMed DOI PMC

DAMPNEY RA. Central neural control of the cardiovascular system: current perspectives. Adv Physiol Educ. 2016;40:283–296. doi: 10.1152/advan.00027.2016. PubMed DOI

De DIEGO AM, GANDÍA L, GARCÍA AG. A physiological view of the central and peripheral mechanisms that regulate the release of catecholamines at the adrenal medulla. Acta Physiol (Oxf) 2008;192:287–301. doi: 10.1111/j.1748-1716.2007.01807.x. PubMed DOI

De PASCUAL R, MIRANDA-FERREIRA R, GALVÃO KM, LAMEU C, ULRICH H, SMAILI SS, JURKIEWICZ A, GARCÍA AG, GANDÍA L. Lower density of L-type and higher density of P/Q-type of calcium channels in chromaffin cells of hypertensive, compared with normotensive rats. Eur J Pharmacol. 2013;706:25–35. doi: 10.1016/j.ejphar.2013.02.046. PubMed DOI

EISENHOFER G, FRIBERG P, PACAK K, GOLDSTEIN DS, MURPHY DL, TSIGOS C, QUYYUMI AA, BRUNNER HG, LENDERS JW. Plasma metadrenalines: do they provide useful information about sympatho-adrenal function and catecholamine metabolism? Clin Sci (Lond) 1995a;88:533–542. doi: 10.1042/cs0880533. PubMed DOI

EISENHOFER G, KOPIN IJ, GOLDSTEIN DS. Catecholamine metabolism: a contemporary view with implications for physiology and medicine. Pharmacol Rev. 2004a;56:331–349. doi: 10.1124/pr.56.3.1. PubMed DOI

EISENHOFER G, KOPIN IJ, GOLDSTEIN DS. Leaky catecholamine stores: undue waste or a stress response coping mechanism? Ann N Y Acad Sci. 2004b;1018:224–230. doi: 10.1196/annals.1296.027. PubMed DOI

EISENHOFER G, RUNDQUIST B, ANEMAN A, FRIBERG P, DAKAK N, KOPIN IJ, JACOBS MC, LENDERS JW. Regional release and removal of catecholamines and extraneuronal metabolism to metanephrines. J Clin Endocrinol Metab. 1995b;80:3009–3017. doi: 10.1210/jcem.80.10.7559889. PubMed DOI

ELAM M, GRASSI G. Adrenaline and hypertension: new evidence for a guilty verdict? J Hypertens. 2000;18:675–677. doi: 10.1097/00004872-200018060-00003. PubMed DOI

FERRARI AU, DAFFONCHIO A, FRANZELLI C, MANCIA G. Potentiation of the baroreceptor-heart rate reflex by sympathectomy in conscious rats. Hypertension. 1991;18:230–235. doi: 10.1161/01.HYP.18.2.230. PubMed DOI

FISHER JP, PATON JF. The sympathetic nervous system and blood pressure in humans: implications for hypertension. J Hum Hypertens. 2012;26:463–475. doi: 10.1038/jhh.2011.66. PubMed DOI

FLATMARK T. Catecholamine biosynthesis and physiological regulation in neuroendocrine cells. Acta Physiol Scand. 2000;168:1–17. doi: 10.1046/j.1365-201x.2000.00596.x. PubMed DOI

FLORAS JS. Epinephrine and the genesis of hypertension. Hypertension. 1992;19:1–18. doi: 10.1161/01.HYP.19.1.1. PubMed DOI

FRIEDMAN S, KAUFMAN S. 3,4-dihydroxyphenylethylamine beta-hydroxylase. Physical properties, copper content, and role of copper in the catalytic acttivity. J Biol Chem. 1965;240:4763–4773. doi: 10.1016/S0021-9258(18)97021-3. PubMed DOI

FRIESE RS, MAHBOUBI P, MAHAPATRA NR, MAHATA SK, SCHORK NJ, SCHMID-SCHÖNBEIN GW, O’CONNOR DT. Common genetic mechanisms of blood pressure elevation in two independent rodent models of human essential hypertension. Am J Hypertens. 2005;18:633–652. doi: 10.1016/j.amjhyper.2004.11.037. PubMed DOI

GAVRILOVIC L, SPASOJEVIC N, TANIC N, DRONJAK S. Chronic isolation of adult rats decreases gene expression of catecholamine biosynthetic enzymes in adrenal medulla. Neuro Endocrinol Lett. 2008;29:1015–1020. PubMed

GERALDES V, GONCALVES-ROSA N, LIU B, PATON JF, ROCHA I. Essential role of RVL medullary neuronal activity in the long term maintenance of hypertension in conscious SHR. Auton Neurosci. 2014;186:22–31. doi: 10.1016/j.autneu.2014.09.002. PubMed DOI

GERALDES V, GONCALVES-ROSA N, TAVARES C, PATON JFR, ROCHA I. Reversing gene expression in cardiovascular target organs following chronic depression of the paraventricular nucleus of hypothalamus and rostral ventrolateral medulla in spontaneous hypertensive rats. Brain Res. 2016;1646:109–115. doi: 10.1016/j.brainres.2016.05.041. PubMed DOI

GILSBACH R, RÖSER C, BEETZ N, BREDE M, HADAMEK K, HAUBOLD M, LEEMHUIS J, PHILIPP M, SCHNEIDER J, URBANSKI M, SZABO B, WEINSHENKER D, HEIN L. Genetic dissection of alpha2-adrenoceptor functions in adrenergic versus nonadrenergic cells. Mol Pharmacol. 2009;75:1160–1170. doi: 10.1124/mol.109.054544. PubMed DOI

GROBECKER H, SAAVEDRA JM, ROIZEN MF, WEISE V, KOPIN IJ, AXELROD J. Peripheral and central catecholaminergic neurons in genetic and experimental hypertension in rats. Clin Sci Mol Med Suppl. 1976;3:377s–380s. doi: 10.1042/cs051377s. PubMed DOI

GRUNDT A, GRUNDT C, GORBEY S, THOMAS MA, LEMMER B. Strain-dependent differences of restraint stress-induced hypertension in WKY and SHR. Physiol Behav. 2009;97:341–346. doi: 10.1016/j.physbeh.2009.02.029. PubMed DOI

GUÉRINEAU NC. Cholinergic and peptidergic neurotransmission in the adrenal medulla: A dynamic control of stimulus-secretion coupling. IUBMB Life. 2020;72:553–567. doi: 10.1002/iub.2117. PubMed DOI

GUFFROY C, STROLIN BENEDETTI M. Monoamine oxidase and semicarbazide-sensitive amine oxidase in spontaneously hypertensive and in normotensive control rats. Life Sci. 1984;34:535–545. doi: 10.1016/0024-3205(84)90486-7. PubMed DOI

GUIMARÃES S, MOURA D. Vascular adrenoceptors: an update. Pharmacol Rev. 2001;53:319–356. PubMed

GUYENET PG. The sympathetic control of blood pressure. Nat Rev Neurosci. 2006;7:335–346. doi: 10.1038/nrn1902. PubMed DOI

HAJÓS M, ENGBERG G. Emotional hyperthermia in spontaneously hypertensive rats. Psychopharmacology (Berl) 1986;90:170–172. doi: 10.1007/BF00181235. PubMed DOI

HANO T, RHO J. Norepinephrine overflow in perfused mesenteric arteries of spontaneously hypertensive rats. Hypertension. 1989;14:44–53. doi: 10.1161/01.HYP.14.1.44. PubMed DOI

HASHIMOTO K, MAKINO S, HIRASAWA R, TAKAO T, SUGAWARA M, MURAKAMI K, ONO K, OTA Z. Abnormalities in the hypothalamo-pituitary-adrenal axis in spontaneously hypertensive rats during development of hypertension. Endocrinology. 1989;125:1161–1167. doi: 10.1210/endo-125-3-1161. PubMed DOI

HATTORI T, HASHIMOTO K, OTA Z. Adrenocorticotropin responses to corticotropin releasing factor and vasopressin in spontaneously hypertensive rats. Hypertension. 1986;8:386–390. doi: 10.1161/01.HYP.8.5.386. PubMed DOI

HIGUCHI H, NAKANO K, IWASA A. Decrease in prepro-neuropeptide Y gene expression in the adrenal gland and cerebral cortex of spontaneously hypertensive rats. Neuropeptides. 1993;25:343–349. doi: 10.1016/0143-4179(93)90053-D. PubMed DOI

HONG M, LI S, FOURNIER A, ST-PIERRE S, PELLETIER G. Role of neuropeptide Y in the regulation of tyrosine hydroxylase gene expression in rat adrenal glands. Neuroendocrinology. 1995;61:85–88. doi: 10.1159/000126816. PubMed DOI

JANSEN AS, NGUYEN XV, KARPITSKIY V, METTENLEITER TC, LOEWY AD. Central command neurons of the sympathetic nervous system: basis of the fight-or-flight response. Science. 1995;270:644–646. doi: 10.1126/science.270.5236.644. PubMed DOI

JIROUT ML, FRIESE RS, MAHAPATRA NR, MAHATA M, TAUPENOT L, MAHATA SK, KREN V, ZÍDEK V, FISCHER J, MAATZ H, ZIEGLER MG, PRAVENEC M, HUBNER N, AITMAN TJ, SCHORK NJ, O’CONNOR DT. Genetic regulation of catecholamine synthesis, storage and secretion in the spontaneously hypertensive rat. Hum Mol Genet. 2010;19:2567–2580. doi: 10.1093/hmg/ddq135. PubMed DOI PMC

JOHNSON EM, JR, O’BRIEN F. Evaluation of the permanent sympathectomy produced by the administration of guanethidine to adult rats. J Pharmacol Exp Ther. 1976;196:53–61. PubMed

JUDY WV, FARRELL SK. Arterial baroreceptor reflex control of sympathetic nerve activity in the spontaneously hypertensive rat. Hypertension. 1979;1:605–614. doi: 10.1161/01.HYP.1.6.605. PubMed DOI

KHALIL Z, MARLEY PD, LIVETT BG. Elevation in plasma catecholamines in response to insulin stress is under both neuronal and nonneuronal control. Endocrinology. 1986;119:159–167. doi: 10.1210/endo-119-1-159. PubMed DOI

KIPPENBERGER AG, PALMER DJ, COMER AM, LIPSKI J, BURTON LD, CHRISTIE DL. Localization of the noradrenaline transporter in rat adrenal medulla and PC12 cells: evidence for its association with secretory granules in PC12 cells. J Neurochem. 1999;73:1024–1032. doi: 10.1046/j.1471-4159.1999.0731024.x. PubMed DOI

KORNER P, BOBIK A, ODDIE C, FRIBERG P. Sympathoadrenal system is critical for structural changes in genetic hypertension. Hypertension. 1993;22:243–252. doi: 10.1161/01.HYP.22.2.243. PubMed DOI

KUMAI T, TANAKA M, WATANABE M, KOBAYASHI S. Elevated tyrosine hydroxylase mRNA levels in the adrenal medulla of spontaneously hypertensive rats. Jpn J Pharmacol. 1994;65:367–369. doi: 10.1254/jjp.65.367. PubMed DOI

KUMAI T, TATEISHI T, TANAKA M, WATANABE M, SHIMIZU H, KOBAYASHI S. Tyrosine hydroxylase antisense gene therapy causes hypotensive effects in the spontaneously hypertensive rats. J Hypertens. 2001;19:1769–1773. doi: 10.1097/00004872-200110000-00010. PubMed DOI

KVETNANSKY R, McCARTY R, THOA NB, LAKE CR, KOPIN IJ. Sympatho-adrenal responses of spontaneously hypertensive rats to immobilization stress. Am J Physiol. 1979;236:H457–H462. doi: 10.1152/ajpheart.1979.236.3.H457. PubMed DOI

KVETNANSKY R, MICUTKOVA L, RYCHKOVA N, KUBOVCAKOVA L, MRAVEC B, FILIPENKO M, SABBAN EL, KRIZANOVA O. Quantitative evaluation of catecholamine enzymes gene expression in adrenal medulla and sympathetic Ganglia of stressed rats. Ann N Y Acad Sci. 2004;1018:356–669. doi: 10.1196/annals.1296.045. PubMed DOI

KVETNANSKY R, SABBAN EL, PALKOVITS M. Catecholaminergic systems in stress: structural and molecular genetic approaches. Physiol Rev. 2009;89:535–606. doi: 10.1152/physrev.00042.2006. PubMed DOI

LEE RM, TRIGGLE CR, CHEUNG DW, COUGHLIN MD. Structural and functional consequence of neonatal sympathectomy on the blood vessels of spontaneously hypertensive rats. Hypertension. 1987;10:328–338. doi: 10.1161/01.HYP.10.3.328. PubMed DOI

LEE RM, BORKOWSKI KR, LEENEN FH, TSOPORIS J, COUGHLIN M. Combined effect of neonatal sympathectomy and adrenal demedullation on blood pressure and vascular changes in spontaneously hypertensive rats. Circ Res. 1991a;69:714–721. doi: 10.1161/01.RES.69.3.714. PubMed DOI

LEE RM, BORKOWSKI KR, LEENEN FH, TSOPORIS J, COUGHLIN M. Interaction between sympathetic nervous system and adrenal medulla in the control of cardiovascular changes in hypertension. J Cardiovasc Pharmacol. 1991b;17(Suppl 2):S114–S116. doi: 10.1097/00005344-199117002-00025. PubMed DOI

LI DP, YANG Q, PAN HM, PAN HL. Pre- and postsynaptic plasticity underlying augmented glutamatergic inputs to hypothalamic presympathetic neurons in spontaneously hypertensive rats. J Physiol. 2008;586:1637–1647. doi: 10.1113/jphysiol.2007.149732. PubMed DOI PMC

LIM DY, JANG SJ, PARK DG. Comparison of catecholamine release in the isolated adrenal glands of SHR and WKY rats. Auton Autacoid Pharmacol. 2002;22:225–232. doi: 10.1046/j.1474-8673.2002.00264.x. PubMed DOI

LIVETT BG, MARLEY PD. Noncholinergic control of adrenal catecholamine secretion. J Anat. 1993;183:277–289. PubMed PMC

LYMPEROPOULOS A, BRILL A, McCRINK KA. GPCRs of adrenal chromaffin cells & catecholamines: The plot thickens. Int J Biochem Cell Biol. 2016;77:213–219. doi: 10.1016/j.biocel.2016.02.003. PubMed DOI

MAHAPATRA NR, O’CONNOR DT, VAINGANKAR SM, HIKIM AP, MAHATA M, RAY S, STAITE E, WU H, GU Y, DALTON N, KENNEDY BP, ZIEGLER MG, ROSS J, MAHATA SK. Hypertension from targeted ablation of chromogranin A can be rescued by the human ortholog. J Clin Invest. 2005;115:1942–1952. doi: 10.1172/JCI24354. PubMed DOI PMC

MANCIA G, GRASSI G. The autonomic nervous system and hypertension. Circ Res. 2014;114:1804–1814. doi: 10.1161/CIRCRESAHA.114.302524. PubMed DOI

MASUDA M, TSUNODA M, IMAI K. Low catechol-O-methyltransferase activity in the brain and blood pressure regulation. Biol Pharm Bull. 2006;29:202–205. doi: 10.1248/bpb.29.202. PubMed DOI

MATSUURA T, KUMAGAI H, KAWAI A, ONIMARU H, IMAI M, OSHIMA N, SAKATA K, SARUTA T. Rostral ventrolateral medulla neurons of neonatal Wistar-Kyoto and spontaneously hypertensive rats. Hypertension. 2002;40:560–565. doi: 10.1161/01.HYP.0000032043.64223.87. PubMed DOI

McALLEN RM, MAY CN. Differential drives from rostral ventrolateral medullary neurons to three identified sympathetic outflows. Am J Physiol. 1994;267:R935–R944. doi: 10.1152/ajpregu.1994.267.4.R935. PubMed DOI

McCARTY R, HORWATT K, KONARSKA M. Chronic stress and sympathetic-adrenal medullary responsiveness. Soc Sci Med. 1988;26:333–341. doi: 10.1016/0277-9536(88)90398-X. PubMed DOI

McCARTY R, KVETNANSKY R, LAKE CR, THOA NB, KOPIN IJ. Sympatho-adrenal activity of SHR and WKY rats during recovery from forced immobilization. Physiol Behav. 1978;21:951–955. doi: 10.1016/0031-9384(78)90171-3. PubMed DOI

MILLER DW, TESSEL RE. Age-dependent hyperresponsiveness of spontaneously hypertensive rats to the pressor effects of intravenous neuropeptide Y (NPY): role of mode of peptide administration and plasma NPY-like immunoreactivity. J Cardiovasc Pharmacol. 1991;18:647–656. doi: 10.1097/00005344-199111000-00001. PubMed DOI

MINSON J, ARNOLDA L, LLEWELLYN-SMITH I, PILOWSKY P, CHALMERS J. Altered c-fos in rostral medulla and spinal cord of spontaneously hypertensive rats. Hypertension. 1996;27:433–441. doi: 10.1161/01.HYP.27.3.433. PubMed DOI

MIRANDA-FERREIRA R, De PASCUAL R, De DIEGO AM, CARICATI-NETO A, GANDÍA L, JURKIEWICZ A, GARCÍA AG. Single-vesicle catecholamine release has greater quantal content and faster kinetics in chromaffin cells from hypertensive, as compared with normotensive, rats. J Pharmacol Exp Ther. 2008;324:685–693. doi: 10.1124/jpet.107.128819. PubMed DOI

MORRISON SF, WHITEHORN D. Enhanced preganglionic sympathetic nerve responses in spontaneously hypertensive rats. Brain Res. 1984;296:152–155. doi: 10.1016/0006-8993(84)90522-5. PubMed DOI

MORRISON SF, CAO WH. Different adrenal sympathetic preganglionic neurons regulate epinephrine and norepinephrine secretion. Am J Physiol Regul Integr Comp Physiol. 2000;279:R1763–R1775. doi: 10.1152/ajpregu.2000.279.5.R1763. PubMed DOI

MOURA E, PINHO COSTA PM, MOURA D, GUIMARÃES S, VIEIRA-COELHO MA. Decreased tyrosine hydroxylase activity in the adrenals of spontaneously hypertensive rats. Life Sci. 2005;76:2953–2964. doi: 10.1016/j.lfs.2004.11.017. PubMed DOI

MOURA E, PINTO CE, CALÓ A, SERRÃO MP, AFONSO J, VIEIRA-COELHO MA. α2-Adrenoceptor-mediated inhibition of catecholamine release from the adrenal medulla of spontaneously hypertensive rats is preserved in the early stages of hypertension. Basic Clin Pharmacol Toxicol. 2011;109:253–260. doi: 10.1111/j.1742-7843.2011.00712.x. PubMed DOI

MRAVEC B. A new focus on interoceptive properties of adrenal medulla. Auton Neurosci. 2005;120:10–17. doi: 10.1016/j.autneu.2005.04.005. PubMed DOI

MUELLER PJ, MISCHEL NA, SCISLO TJ. Differential activation of adrenal, renal, and lumbar sympathetic nerves following stimulation of the rostral ventrolateral medulla of the rat. Am J Physiol Regul Integr Comp Physiol. 2011;300:R1230–R1240. doi: 10.1152/ajpregu.00713.2010. PubMed DOI PMC

NAGATSU T, IKUTA K, NUMATA Y, KATO T, SANO M. Vascular and brain dopamine beta-hydroxylase activity in young spontaneously hypertensive rats. Science. 1976;191:290–291. doi: 10.1126/science.1858. PubMed DOI

NAGATSU T, LEVITT M, UDENFRIEND S. Tyrosine hydroxylase. The initial step in norepinephrine biosynthesis. J Biol Chem. 1964;239:2910–2917. doi: 10.1016/S0021-9258(18)93832-9. PubMed DOI

NGUYEN P, PELTSCH H, De WIT J, CRISPO J, UBRIACO G, EIBL J, TAI TC. Regulation of the phenylethanolamine N-methyltransferase gene in the adrenal gland of the spontaneous hypertensive rat. Neurosci Lett. 2009;461:280–284. doi: 10.1016/j.neulet.2009.06.022. PubMed DOI

O’CONNOR DT, TAKIYYUDDIN MA, PRINTZ MP, DINH TQ, BARBOSA JA, ROZANSKY DJ, MAHATA SK, WU H, KENNEDY BP, ZIEGLER MG, WRIGHT FA, SCHLAGER G, PARMER RJ. Catecholamine storage vesicle protein expression in genetic hypertension. Blood Press. 1999;8:285–295. doi: 10.1080/080370599439508. PubMed DOI

ONDICOVA K, MRAVEC B. Multilevel interactions between the sympathetic and parasympathetic nervous systems: a minireview. Endocr Regul. 2010;44:69–75. doi: 10.4149/endo_2010_02_69. PubMed DOI

PALMER AA, PRINTZ MP. Strain differences in Fos expression following airpuff startle in Spontaneously Hypertensive and Wistar Kyoto rats. Neuroscience. 1999;89:965–978. doi: 10.1016/S0306-4522(98)00333-9. PubMed DOI

PARRAMÓN M, GONZÁLEZ MP, OSET-GASQUE MJ. A reassessment of the modulatory role of cyclic AMP in catecholamine secretion by chromaffin cells. Br J Pharmacol. 1995;114:517–523. doi: 10.1111/j.1476-5381.1995.tb13257.x. PubMed DOI PMC

PHILLIPS JK, DUBEY R, SESIASHVILVI E, TAKEDA M, CHRISTIE DL, LIPSKI J. Differential expression of the noradrenaline transporter in adrenergic chromaffin cells, ganglion cells and nerve fibres of the rat adrenal medulla. J Chem Neuroanat. 2001;21:95–104. doi: 10.1016/S0891-0618(00)00113-7. PubMed DOI

PINTÉROVÁ M, KUNEŠ J, ZICHA J. Altered neural and vascular mechanisms in hypertension. Physiol Res. 2011;60:381–402. doi: 10.33549/physiolres.932189. PubMed DOI

PRAVENEC M, LANDA V, ZÍDEK V, MLEJNEK P, ŠILHAVÝ J, MIR SA, VAINGANKAR SM, WANG J, KURTZ TW. Effects of transgenic expression of dopamine beta hydroxylase (Dbh) gene on blood pressure in spontaneously hypertensive rats. Physiol Res. 2016;65:1039–1044. doi: 10.33549/physiolres.933490. PubMed DOI PMC

PYNER S, COOTE JH. Evidence that sympathetic preganglionic neurones are arranged in target-specific columns in the thoracic spinal cord of the rat. J Comp Neurol. 1994;342:15–22. doi: 10.1002/cne.903420103. PubMed DOI

PYNER S, COOTE JH. Rostroventrolateral medulla neurons preferentially project to target-specified sympathetic preganglionic neurons. Neuroscience. 1998;83:617–631. doi: 10.1016/S0306-4522(97)00355-2. PubMed DOI

REJA V, GOODCHILD AK, PHILLIPS JK, PILOWSKY PM. Tyrosine hydroxylase gene expression in ventrolateral medulla oblongata of WKY and SHR: a quantitative real-time polymerase chain reaction study. Auton Neurosci. 2002a;98:79–84. doi: 10.1016/S1566-0702(02)00037-1. PubMed DOI

REJA V, GOODCHILD AK, PILOWSKY PM. Catecholamine-related gene expression correlates with blood pressures in SHR. Hypertension. 2002b;40:342–347. doi: 10.1161/01.HYP.0000027684.06638.63. PubMed DOI

RENGO G, LYMPEROPOULOS A, ZINCARELLI C, FEMMINELLA G, LICCARDO D, PAGANO G, De LUCIA C, CANNAVO A, GARGIULO P, FERRARA N, PERRONE FILARDI P, KOCH W, LEOSCO D. Blockade of β-adrenoceptors restores the GRK2-mediated adrenal α(2) -adrenoceptor-catecholamine production axis in heart failure. Br J Pharmacol. 2012;166:2430–2440. doi: 10.1111/j.1476-5381.2012.01972.x. PubMed DOI PMC

RICKSTEN SE, LUNDIN S, THOREN P. Spontaneous variations in arterial blood pressure, heart rate and sympathetic nerve activity in conscious normotensive and spontaneously hypertensive rats. Acta Physiol Scand. 1984;120:595–600. doi: 10.1111/j.1748-1716.1984.tb07425.x. PubMed DOI

SCHIEKEN RM. The effect of diazepam upon the development of hypertension in the spontaneously hypertensive rat. Pediatr Res. 1979;13:992–996. doi: 10.1203/00006450-197909000-00008. PubMed DOI

SCHRAMM LP, CHORNOBOY ES. Sympathetic activity in spontaneously hypertensive rats after spinal transection. Am J Physiol. 1982;243:R506–R511. doi: 10.1152/ajpregu.1982.243.5.R506. PubMed DOI

SHIMODA K, SHEN GH, PFEIFFER RF, McCOMB RD, YANG HY. Antiserum against neuropeptide Y enhances the nicotine-mediated release of catecholamines from cultured rat adrenal chromaffin cells. Neurochem Int. 1993;23:71–77. doi: 10.1016/0197-0186(93)90145-U. PubMed DOI

SMITH TL, HUTCHINS PM. Central hemodynamics in the developmental stage of spontaneous hypertension in the unanesthetized rat. Hypertension. 1979;1:508–517. doi: 10.1161/01.HYP.1.5.508. PubMed DOI

STACHOWIAK MK, JIANG HK, POISNER AM, TUOMINEN RK, HONG JS. Short and long term regulation of catecholamine biosynthetic enzymes by angiotensin in cultured adrenal medullary cells. Molecular mechanisms and nature of second messenger systems. J Biol Chem. 1990;265:4694–4702. doi: 10.1016/S0021-9258(19)39618-8. PubMed DOI

STERLEY TL, HOWELLS FM, RUSSELL VA. Effects of early life trauma are dependent on genetic predisposition: a rat study. Behav Brain Funct. 2011;7:11. doi: 10.1186/1744-9081-7-11. PubMed DOI PMC

STERN JE, SONNER PM, SON SJ, SILVA FC, JACKSON K, MICHELINI LC. Exercise training normalizes an increased neuronal excitability of NTS-projecting neurons of the hypothalamic paraventricular nucleus in hypertensive rats. J Neurophysiol. 2012;107:2912–2921. doi: 10.1152/jn.00884.2011. PubMed DOI PMC

STRACK AM, SAWYER WB, PLATT KB, LOEWY AD. CNS cell groups regulating the sympathetic outflow to adrenal gland as revealed by transneuronal cell body labeling with pseudorabies virus. Brain Res. 1989;491:274–296. doi: 10.1016/0006-8993(89)90063-2. PubMed DOI

SUZUKI H, DELANO FA, JAMSHIDI N, KATZ D, MORI M, KOSAKI K, GOTTLIEB RA, ISHII H, SCHMID-SCHÖNBEIN GW. Enhanced DNA fragmentation in the thymus of spontaneously hypertensive rats. Am J Physiol. 1999;276:H2135–H2140. doi: 10.1152/ajpheart.1999.276.6.H2135. PubMed DOI

SZEMEREDI K, BAGDY G, STULL R, KEISER HR, KOPIN IJ, GOLDSTEIN DS. Sympathoadrenomedullary hyper-responsiveness to yohimbine in juvenile spontaneously hypertensive rats. Life Sci. 1988;43:1063–1068. doi: 10.1016/0024-3205(88)90201-9. PubMed DOI

TABEI R, FUJIWARA T, KONDO M, TERADA M. Morphological studies on the paraneuron in spontaneously hypertensive rats. Clin Exp Hypertens A. 1988;10(Suppl 1):235–247. doi: 10.3109/10641968809075975. PubMed DOI

TAKEDA K, BUÑAG RD. Sympathetic hyperactivity during hypothalamic stimulation in spontaneously hypertensive rats. J Clin Invest. 1978;62:642–648. doi: 10.1172/JCI109171. PubMed DOI PMC

TARAVIRAS S, OLLI-LÄHDESMÄKI T, LYMPEROPOULOS A, CHARITONIDOU D, MAVROIDIS M, KALLIO J, SCHEININ M, FLORDELLIS C. Subtype-specific neuronal differentiation of PC12 cells transfected with alpha2-adrenergic receptors. Eur J Cell Biol. 2002;81:363–374. doi: 10.1078/0171-9335-00250. PubMed DOI

TEKIN I, ROSKOSKI R, JR, CARKACI-SALLI N, VRANA KE. Complex molecular regulation of tyrosine hydroxylase. J Neural Transm (Vienna) 2014;121:1451–1481. doi: 10.1007/s00702-014-1238-7. PubMed DOI

THOENEN H, TRANZER JP. The pharmacology of 6-hydroxydopamine. Annu Rev Pharmacol. 1973;13:169–180. doi: 10.1146/annurev.pa.13.040173.001125. PubMed DOI

THÖNY B, AUERBACH G, BLAU N. Tetrahydrobiopterin biosynthesis, regeneration and functions. Biochem J. 2000;347:1–16. doi: 10.1042/bj3470001. PubMed DOI PMC

TILLINGER A, SOLLAS A, SEROVA LI, KVETNANSKY R, SABBAN EL. Vesicular monoamine transporters (VMATs) in adrenal chromaffin cells: stress-triggered induction of VMAT2 and expression in epinephrine synthesizing cells. Cell Mol Neurobiol. 2010;30:1459–1465. doi: 10.1007/s10571-010-9575-z. PubMed DOI

TIPTON CM, STUREK MS, OPPLIGER RA, MATTHES RD, OVERTON JM, EDWARDS JG. Responses of SHR to combinations of chemical sympathectomy, adrenal demedullation, and training. Am J Physiol. 1984;247:H109–H118. doi: 10.1152/ajpheart.1984.247.1.H109. PubMed DOI

TSUNODA M, IMAI K. An assay for determination of rat adrenal catechol-O-methyltransferase activity: comparison of spontaneously hypertensive rats and Wistar-Kyoto rats. Anal Bioanal Chem. 2004;380:887–890. doi: 10.1007/s00216-004-2884-7. PubMed DOI

ULRICH-LAI YM, FIGUEIREDO HF, OSTRANDER MM, CHOI DC, ENGELAND WC, HERMAN JP. Chronic stress induces adrenal hyperplasia and hypertrophy in a subregion-specific manner. Am J Physiol Endocrinol Metab. 2006;291:E965–E973. doi: 10.1152/ajpendo.00070.2006. PubMed DOI

UNGER T, BECKER H, DIETZ R, GANTEN D, LANG RE, RETTIG R, SCHÖMIG A, SCHWAB NA. Antihypertensive effect of the GABA receptor agonist muscimol in spontaneously hypertensive rats. Role of the sympathoadrenal axis. Circ Res. 1984;54:30–37. doi: 10.1161/01.RES.54.1.30. PubMed DOI

URBAN R, SZABO B, STARKE K. Involvement of alpha 2-adrenoceptors in the cardiovascular effects of moxonidine. Eur J Pharmacol. 1995;282:19–28. doi: 10.1016/0014-2999(95)00297-X. PubMed DOI

VAVŘÍNOVÁ A, BEHULIAK M, BENCZE M, VANĚČKOVÁ I, ZICHA J. Which sympathoadrenal abnormalities of adult spontaneously hypertensive rats can be traced to a prehypertensive stage? Hypertens Res. 2019a;42:949–959. doi: 10.1038/s41440-018-0198-y. PubMed DOI

VAVŘÍNOVÁ A, BEHULIAK M, BENCZE M, VODIČKA M, ERGANG P, VANĚČKOVÁ I, ZICHA J. Sympathectomy-induced blood pressure reduction in adult normotensive and hypertensive rats is counteracted by enhanced cardiovascular sensitivity to vasoconstrictors. Hypertens Res. 2019b;42:1872–1882. doi: 10.1038/s41440-019-0319-2. PubMed DOI

VAVŘÍNOVÁ A, BEHULIAK M, ZICHA J. The importance of the selection of appropriate reference genes for gene expression profiling in adrenal medulla or sympathetic ganglia of spontaneously hypertensive rat. Physiol Res. 2016;65:401–411. doi: 10.33549/physiolres.933351. PubMed DOI

VISKUPIC E, KVETNANSKY R, SABBAN EL, FUKUHARA K, WEISE VK, KOPIN IJ, SCHWARTZ JP. Increase in rat adrenal phenylethanolamine N-methyltransferase mRNA level caused by immobilization stress depends on intact pituitary-adrenocortical axis. J Neurochem. 1994;63:808–814. doi: 10.1046/j.1471-4159.1994.63030808.x. PubMed DOI

VLACHAKIS ND, ALEXANDER N, MARONDE RF. Increased plasma normetanephrine in spontaneously hypertensive rats. Clin Exp Hypertens. 1980;2:309–319. doi: 10.3109/10641968009046426. PubMed DOI

VOLLMER RR, BARUCHIN A, KOLIBAL-PEGHER SS, COREY SP, STRICKER EM, KAPLAN BB. Selective activation of norepinephrine- and epinephrine-secreting chromaffin cells in rat adrenal medulla. Am J Physiol. 1992;263:R716–R721. doi: 10.1152/ajpregu.1992.263.3.R716. PubMed DOI

WAKADE AR, WAKADE TD. Absence of catecholamine uptake mechanism in the isolated perfused adrenal gland of the rat. Neurosci Lett. 1984;50:139–143. doi: 10.1016/0304-3940(84)90476-2. PubMed DOI

WANG Q, WANG M, WHIM MD. Neuropeptide y gates a stress-induced, long-lasting plasticity in the sympathetic nervous system. J Neurosci. 2013;33:12705–12717. doi: 10.1523/JNEUROSCI.3132-12.2013. PubMed DOI PMC

WESTFALL TC, HAN SP, KNUEPFER M, MARTIN J, CHEN XL, Del VALLE K, CIARLEGLIO A, NAES L. Neuropeptides in hypertension: role of neuropeptide Y and calcitonin gene related peptide. Br J Clin Pharmacol. 1990;30(Suppl 1):75S–82S. doi: 10.1111/j.1365-2125.1990.tb05472.x. PubMed DOI PMC

WHALL CW, JR, MYERS MM, HALPERN W. Norepinephrine sensitivity, tension development and neuronal uptake in resistance arteries from spontaneously hypertensive and normotensive rats. Blood Vessels. 1980;17:1–15. doi: 10.1159/000158230. PubMed DOI

WONG DL. Epinephrine biosynthesis: hormonal and neural control during stress. Cell Mol Neurobiol. 2006;26:891–900. doi: 10.1007/s10571-006-9056-6. PubMed DOI

WONG DL. Why is the adrenal adrenergic? Endocr Pathol. 2003;14:25–36. doi: 10.1385/EP:14:1:25. PubMed DOI

WONG DL, YAMASAKI L, CIARANELLO RD. Characterization of the isozymes of bovine adrenal medullary phenylethanolamine N-methyltransferase. Brain Res. 1987;410:32–44. doi: 10.1016/S0006-8993(87)80017-3. PubMed DOI

YAGIL Y, YAGIL C. Genetic models of hypertension in experimental animals. Exp Nephrol. 2001;9:1–9. doi: 10.1159/000020701. PubMed DOI

YAMORI Y, YAMABE H, De JONG W, LOVENBERG W, SJOERDSMA A. Effect of tissue norepinephrine depletion by 6-hydroxydopamine on blood pressure in spontaneously hypertensive rats. Eur J Pharmacol. 1972;17:135–140. doi: 10.1016/0014-2999(72)90279-8. PubMed DOI

ZAGON A, SMITH AD. Monosynaptic projections from the rostral ventrolateral medulla oblongata to identified sympathetic preganglionic neurons. Neuroscience. 1993;54:729–743. doi: 10.1016/0306-4522(93)90243-9. PubMed DOI

ZHANG K, CHEN Y, WEN G, MAHATA M, RAO F, FUNG MM, VAINGANKAR S, BISWAS N, GAYEN JR, FRIESE RS, MAHATA SK, HAMILTON BA, O’CONNOR DT. Catecholamine storage vesicles: role of core protein genetic polymorphisms in hypertension. Curr Hypertens Rep. 2011;13:36–45. doi: 10.1007/s11906-010-0170-y. PubMed DOI PMC

ZHANG W, THORÉN P. Hyper-responsiveness of adrenal sympathetic nerve activity in spontaneously hypertensive rats to ganglionic blockade, mental stress and neuronglucopenia. Pflugers Arch. 1998;437:56–60. doi: 10.1007/s004240050746. PubMed DOI

ZICHA J, KUNES J. Ontogenetic aspects of hypertension development: analysis in the rat. Physiol Rev. 1999;79:1227–1282. doi: 10.1152/physrev.1999.79.4.1227. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...