Transgenic rescue of defective Cd36 enhances myocardial adenylyl cyclase signaling in spontaneously hypertensive rats
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
- MeSH
- adenylátcyklasy genetika metabolismus MeSH
- agonisté beta-1-adrenergních receptorů farmakologie MeSH
- antigeny CD36 genetika metabolismus MeSH
- beta-adrenergní receptory metabolismus MeSH
- dobutamin farmakologie MeSH
- kontrakce myokardu MeSH
- krysa rodu Rattus MeSH
- myokard metabolismus MeSH
- potkani inbrední SHR MeSH
- potkani transgenní MeSH
- proteinkinasy závislé na cyklickém AMP metabolismus MeSH
- proteiny vázající GTP metabolismus MeSH
- signální transdukce * MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- adenylátcyklasy MeSH
- agonisté beta-1-adrenergních receptorů MeSH
- antigeny CD36 MeSH
- beta-adrenergní receptory MeSH
- dobutamin MeSH
- proteinkinasy závislé na cyklickém AMP MeSH
- proteiny vázající GTP MeSH
Dysfunction or abnormalities in the regulation of fatty acid translocase Cd36, a multifunctional membrane protein participating in uptake of long-chain fatty acids, has been linked to the development of heart diseases both in animals and humans. We have previously shown that the Cd36 transgenic spontaneously hypertensive rat (SHR-Cd36), with a wild type Cd36, has higher susceptibility to ischemic ventricular arrhythmias when compared to spontaneously hypertensive rat (SHR) carrying a mutant Cd36 gene, which may have been related to increased β-adrenergic responsiveness of these animals (Neckar et al., 2012 Physiol. Genomics 44:173-182). The present study aimed to determine whether the insertion of the wild type Cd36 into SHR would affect the function of myocardial G protein-regulated adenylyl cyclase (AC) signaling. β-Adrenergic receptors (β-ARs) were characterized by radioligand-binding experiments and the expression of selected G protein subunits, AC, and protein kinase A (PKA) was determined by RT-PCR and Western blot analyses. There was no significant difference in the amount of trimeric G proteins, but the number of β-ARs was higher (by about 35 %) in myocardial preparations from SHR-Cd36 as compared to SHR. Besides that, transgenic rats expressed increased amount (by about 20 %) of the dominant myocardial isoforms AC5/6 and contained higher levels of both nonphosphorylated (by 11 %) and phosphorylated (by 45 %) PKA. Differently stimulated AC activity in SHR-Cd36 significantly exceeded (by about 18-30 %) the enzyme activity in SHR. Changes at the molecular level were reflected by higher contractile responses to stimulation by the adrenergic agonist dobutamine. In summary, it can be concluded that the increased susceptibility to ischemic arrhythmias of SHR-Cd36 is attributable to upregulation of some components of the β-AR signaling pathway, which leads to enhanced sensitization of AC and increased cardiac adrenergic responsiveness.
Zobrazit více v PubMed
Hypertension. 2001 Feb;37(2):209-15 PubMed
Circ Res. 2009 Mar 27;104(6):770-9 PubMed
J Lipid Res. 2009 Apr;50(4):740-8 PubMed
Naunyn Schmiedebergs Arch Pharmacol. 2010 Jul;382(1):63-71 PubMed
Nat Genet. 2001 Feb;27(2):156-8 PubMed
Nucleic Acids Res. 2001 May 1;29(9):e45 PubMed
Trends Pharmacol Sci. 2006 Jun;27(6):330-7 PubMed
Life Sci. 1996;58(2):91-106 PubMed
Prog Pediatr Cardiol. 2011 Jan 1;31(1):35-38 PubMed
J Appl Physiol (1985). 2010 Oct;109(4):1195-202 PubMed
Proc Natl Acad Sci U S A. 2003 May 27;100(11):6819-24 PubMed
Circ Res. 2008 Oct 10;103(8):836-44 PubMed
Circulation. 2004 Mar 30;109(12):1550-7 PubMed
Exp Clin Cardiol. 2011 Fall;16(3):e23-9 PubMed
Can J Physiol Pharmacol. 2000 Mar;78(3):187-98 PubMed
Circ Res. 2001 Nov 23;89(11):997-1004 PubMed
Circulation. 2007 Oct 16;116(16):1776-83 PubMed
Mol Pharmacol. 2001 Sep;60(3):577-83 PubMed
J Hypertens. 2003 Jan;21(1):179-88 PubMed
Circulation. 2000 Apr 11;101(14):1707-14 PubMed
J Biol Chem. 2012 Nov 9;287(46):38901-12 PubMed
Heart Fail Rev. 2009 Dec;14(4):225-41 PubMed
Biochem Pharmacol. 1988 Aug 1;37(15):3017-22 PubMed
Eur J Pharmacol. 2009 Aug 15;616(1-3):1-6 PubMed
Physiol Res. 2008;57(6):973-978 PubMed
J Hypertens. 2011 Apr;29(4):690-5 PubMed
Physiol Genomics. 2012 Feb 1;44(2):173-82 PubMed
Circulation. 2006 Aug 1;114(5):388-96 PubMed
Exp Gerontol. 2009 May;44(5):344-9 PubMed
Basic Res Cardiol. 2010 Mar;105(2):181-92 PubMed
Cardiovasc Res. 2009 Dec 1;84(3):434-41 PubMed
J Pharmacol Exp Ther. 2003 Jul;306(1):1-7 PubMed
Science. 2003 Jun 6;300(5625):1530-2 PubMed
J Muscle Res Cell Motil. 2006;27(5-7):399-403 PubMed
Circulation. 2008 Jan 1;117(1):61-9 PubMed
J Clin Invest. 1995 Oct;96(4):1973-8 PubMed
Jpn Circ J. 1989 Feb;53(2):113-20 PubMed
J Biol Chem. 2001 Jun 29;276(26):23661-6 PubMed
J Mol Med (Berl). 2011 May;89(5):459-69 PubMed
Proc Natl Acad Sci U S A. 2001 Feb 13;98(4):1607-12 PubMed
Proc Natl Acad Sci U S A. 1999 Jun 8;96(12):7059-64 PubMed
Nat Genet. 1997 Jun;16(2):197-201 PubMed
Mol Cell Biochem. 2011 Nov;357(1-2):163-9 PubMed
Blood. 2010 Nov 18;116(20):4297-306 PubMed