Continuous short-term acclimation to moderate cold elicits cardioprotection in rats, and alters β-adrenergic signaling and immune status
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
37880253
PubMed Central
PMC10600221
DOI
10.1038/s41598-023-44205-4
PII: 10.1038/s41598-023-44205-4
Knihovny.cz E-zdroje
- MeSH
- adrenergní látky * metabolismus MeSH
- infarkt myokardu * patologie MeSH
- krysa rodu Rattus MeSH
- myokard metabolismus MeSH
- potkani Wistar MeSH
- proteinkinasy aktivované AMP metabolismus MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- adrenergní látky * MeSH
- proteinkinasy aktivované AMP MeSH
Moderate cold acclimation (MCA) is a non-invasive intervention mitigating effects of various pathological conditions including myocardial infarction. We aim to determine the shortest cardioprotective regimen of MCA and the response of β1/2/3-adrenoceptors (β-AR), its downstream signaling, and inflammatory status, which play a role in cell-survival during myocardial infarction. Adult male Wistar rats were acclimated (9 °C, 1-3-10 days). Infarct size, echocardiography, western blotting, ELISA, mitochondrial respirometry, receptor binding assay, and quantitative immunofluorescence microscopy were carried out on left ventricular myocardium and brown adipose tissue (BAT). MultiPlex analysis of cytokines and chemokines in serum was accomplished. We found that short-term MCA reduced myocardial infarction, improved resistance of mitochondria to Ca2+-overload, and downregulated β1-ARs. The β2-ARs/protein kinase B/Akt were attenuated while β3-ARs translocated on the T-tubular system suggesting its activation. Protein kinase G (PKG) translocated to sarcoplasmic reticulum and phosphorylation of AMPKThr172 increased after 10 days. Principal component analysis revealed a significant shift in cytokine/chemokine serum levels on day 10 of acclimation, which corresponds to maturation of BAT. In conclusion, short-term MCA increases heart resilience to ischemia without any negative side effects such as hypertension or hypertrophy. Cold-elicited cardioprotection is accompanied by β1/2-AR desensitization, activation of the β3-AR/PKG/AMPK pathways, and an immunomodulatory effect.
Institute of Animal Physiology and Genetics Czech Academy of Sciences Libechov Czech Republic
Institute of Biotechnology Czech Academy of Sciences Prague West Czech Republic
Institute of Physiology Czech Academy of Sciences Prague Czech Republic
School of Pharmacy and Medical Science Griffith University Southport QLD Australia
Zobrazit více v PubMed
Heusch G. Critical issues for the translation of cardioprotection. Circ. Res. 2017;120:1477–1486. PubMed
Paradies, V., Chan, M. H. H. & Hausenloy, D. J. Strategies for reducing myocardial infarct size following STEMI. Primary Angioplasty 307–322. https://pubmed.ncbi.nlm.nih.gov/31314426/ (2018). PubMed
Hanssen MJW, et al. Short-term cold acclimation improves insulin sensitivity in patients with type 2 diabetes mellitus. Nat. Med. 2015;21:863–865. PubMed
Hanssen MJW, et al. Short-term cold acclimation recruits brown adipose tissue in obese humans. Diabetes. 2016;65:1179–1189. PubMed
KralovaLesna I, Rychlikova J, Vavrova L, Vybiral S. Could human cold adaptation decrease the risk of cardiovascular disease? J. Therm. Biol. 2015;52:192–198. PubMed
Sun Z, Cade R. Cold-induced hypertension and diuresis. J. Therm. Biol. 2000;25:105–109.
ClinicalTrials.gov. Chronic Cold Exposure and Energy Metabolism in Humans. https://beta.clinicaltrials.gov/study/NCT01730105 (U. S. National Library of Medicine, 2022).
ClinicalTrials.gov. The Effect of Cold Exposure on Energy Expenditure. https://beta.clinicaltrials.gov/study/NCT05107570 (U. S. National Library of Medicine, 2022).
ClinicalTrials.gov. Cold Acclimation as a Modulator of Brown Adipose Tissue Function in Adults with Obesity (MOTORBAT). https://beta.clinicaltrials.gov/study/NCT05468151 (U. S. National Library of Medicine, 2022).
Tibenska V, et al. The cardioprotective effect persisting during recovery from cold acclimation is mediated by the b2-adrenoceptor pathway and Akt activation. J. Appl. Physiol. 2021;130:746–755. PubMed
Tibenska V, et al. Gradual cold acclimation induces cardioprotection without affecting β-adrenergic receptor-mediated adenylyl cyclase signaling. J. Appl. Physiol. 2020;128:1023–1032. PubMed
Lefkowitz RJ, Rockman HA, Koch WJ. Catecholamines, cardiac β-adrenergic receptors, and heart failure. Circulation. 2000;101:1634–1637. PubMed
Scanzano A, Cosentino M. Adrenergic regulation of innate immunity: A review. Front. Pharmacol. 2015;6:1–18. PubMed PMC
Grisanti LA, et al. β2-Adrenergic receptor-dependent chemokine receptor 2 expression regulates leukocyte recruitment to the heart following acute injury. Proc. Natl. Acad. Sci. USA. 2016;113:15126–15131. PubMed PMC
Grisanti LA, et al. Leukocyte-expressed β2-adrenergic receptors are essential for survival after acute myocardial injury. Circulation. 2016;134:153–167. PubMed PMC
Brodde OE, Michel MC, Brodde OE, Michel MC. Adrenergic and muscarinic receptors in the human heart. Pharmacol. Rev. 1999;51:651–689. PubMed
Barki-Harrington L, Perrino C, Rockman HA. Network integration of the adrenergic system in cardiac hypertrophy. Cardiovasc. Res. 2004;63:391–402. PubMed
Lohse MJ, Engelhardt S, Eschenhagen T. What is the role of β-adrenergic signaling in heart failure? Circ. Res. 2003;93:896–906. PubMed
Balligand JL. Cardiac salvage by tweaking with beta-3-adrenergic receptors. Cardiovasc. Res. 2016;111:128–133. PubMed
Micova P, et al. Chronic intermittent hypoxia affects the cytosolic phospholipase A2α/cyclooxygenase 2 pathway via β2-adrenoceptor-mediated ERK/p38 stimulation. Mol. Cell. Biochem. 2016;423:151–163. PubMed
Barr LA, et al. Exercise training provides cardioprotection by activating and coupling endothelial nitric oxide synthase via a β3-adrenergic receptor-AMP-activated protein kinase signaling pathway. Med. Gas Res. 2017;7:1–8. PubMed PMC
Belge C, et al. Enhanced expression of β3-adrenoceptors in cardiac myocytes attenuates neurohormone-induced hypertrophic remodeling through nitric oxide synthase. Circulation. 2014;129:451–462. PubMed
Dubois-Deruy E, et al. Beta 3 adrenoreceptors protect from hypertrophic remodelling through AMP-activated protein kinase and autophagy. ESC Hear. Fail. 2020;7:920–932. PubMed PMC
Sentis SC, Oelkrug R, Mittag J. Thyroid hormones in the regulation of brown adipose tissue thermogenesis. Endocr. Connect. 2021;10:R106–R115. PubMed PMC
Nedergaard, J., Wang, Y. & Cannon, B. Cell proliferation and apoptosis inhibition: Essential processes for recruitment of the full thermogenic capacity of brown adipose tissue. Biochim. Biophys. Acta-Mol. Cell Biol. Lipids1864, 51–58 (2019). PubMed
Hanssen MJW, et al. Serum FGF21 levels are associated with brown adipose tissue activity in humans. Sci. Rep. 2015;5:1–8. PubMed PMC
Villarroya J, et al. New insights into the secretory functions of brown adipose tissue. J. Endocrinol. 2019;243:R19–R27. PubMed
Lømo T, Eken T, Bekkestad Rein E, Njå A. Body temperature control in rats by muscle tone during rest or sleep. Acta Physiol. 2020;228:1–26. PubMed
Shechtman O, Fregly MJ, Papanek PE. Factors affecting cold-induced hypertension in rats. Proc. Soc. Exp. Biol. Med. 1990;195:364–368. PubMed
Trappanese DM, et al. Chronic β1-adrenergic blockade enhances myocardial β3-adrenergic coupling with nitric oxide-cGMP signaling in a canine model of chronic volume overload: New insight into mechanisms of cardiac benefit with selective β1-blocker therapy. Basic Res. Cardiol. 2015;110:1–26. PubMed PMC
Schobesberger S, et al. β-Adrenoceptor redistribution impairs NO/cGMP/PDE2 signalling in 4 failing cardiomyocytes. Elife. 2020;9:1–15. PubMed PMC
Gauthier C, et al. The negative inotropic effect of β3-adrenoceptor stimulation is mediated by activation of a nitric oxide synthase pathway in human ventricle. J. Clin. Invest. 1998;102:1377–1384. PubMed PMC
Mongillo M, et al. Compartmentalized phosphodiesterase-2 activity blunts β-adrenergic cardiac inotropy via an NO/cGMP-dependent pathway. Circ. Res. 2006;98:226–234. PubMed
Farah C, Michel LYM, Balligand JL. Nitric oxide signalling in cardiovascular health and disease. Nat. Rev. Cardiol. 2018;15:292–316. PubMed
Cheng HJ, et al. Upregulation of functional β3-adrenergic receptor in the failing canine myocardium. Circ. Res. 2001;89:599–606. PubMed
Jin CZ, et al. Neuronal nitric oxide synthase is up-regulated by angiotensin II and attenuates NADPH oxidase activity and facilitates relaxation in murine left ventricular myocytes. J. Mol. Cell. Cardiol. 2012;52:1274–1281. PubMed
Calmettes G, et al. Hexokinases and cardioprotection. J. Mol. Cell. Cardiol. 2015;78:107–115. PubMed PMC
Halestrap AP, Pereira GC, Pasdois P. The role of hexokinase in cardioprotection—Mechanism and potential for translation. Br. J. Pharmacol. 2015;172:2085–2100. PubMed PMC
Waskova-Arnostova P, et al. Cardioprotective adaptation of rats to intermittent hypobaric hypoxia is accompanied by the increased association of hexokinase with mitochondria. J. Appl. Physiol. 2015;119:1487–1493. PubMed
Waskova-Arnostova P, et al. Chronic hypoxia enhances expression and activity of mitochondrial creatine kinase and hexokinase in the rat ventricular myocardium. Cell. Physiol. Biochem. 2014;33:310–320. PubMed
Costa ADT, Garlid KD. Intramitochondrial signaling: Interactions among mitoKATP, PKCε, ROS, and MPT. Am. J. Physiol.-Heart Circ. Physiol. 2008;295:H874–H882. PubMed PMC
Li X, et al. AMPK: A therapeutic target of heart failure—Not only metabolism regulation. Biosci. Rep. 2019;39:1–13. PubMed PMC
Marino A, et al. AMP-activated protein kinase: A remarkable contributor to preserve a healthy heart against ROS injury. Free Radic. Biol. Med. 2021;166:238–254. PubMed
Salminen A, Kaarniranta K. AMP-activated protein kinase (AMPK) controls the aging process via an integrated signaling network. Ageing Res. Rev. 2012;11:230–241. PubMed
Calvert JW, et al. Exercise protects against myocardial ischemia-reperfusion injury via stimulation of β3-adrenergic receptors and increased nitric oxide signaling: Role of nitrite and nitrosothiols. Circ. Res. 2011;108:1448–1458. PubMed PMC
Hermida N, et al. Cardiac myocyte β3-adrenergic receptors prevent myocardial fibrosis by modulating oxidant stress-dependent paracrine signaling. Eur. Heart J. 2018;39:888–898. PubMed
Horman S, Beauloye C, Vanoverschelde JL, Bertrand L. AMP-activated protein kinase in the control of cardiac metabolism and remodeling. Curr. Heart Fail. Rep. 2012;9:164–173. PubMed
Liu SQ, et al. Endocrine protection of ischemic myocardium by FGF21 from the liver and adipose tissue. Sci. Rep. 2013;3:1–11. PubMed PMC
Planavila A, et al. Fibroblast growth factor 21 protects against cardiac hypertrophy in mice. Nat. Commun. 2013;4:1–12. PubMed
Mann DL. Innate immunity and the failing heart: The cytokine hypothesis revisited. Circ. Res. 2015;116:1254–1268. PubMed PMC
Robert M, Miossec P. Effects of interleukin 17 on the cardiovascular system. Autoimmun. Rev. 2017;16:984–991. PubMed
Mills KHG. IL-17 and IL-17-producing cells in protection versus pathology. Nat. Rev. Immunol. 2023;23:38–54. PubMed PMC
Kanda T, Takahashi T. Interleukin-6 and cardiovascular diseases. Jpn. Heart J. 2004;45:183–193. PubMed
Elyasi A, et al. The role of interferon-γ in cardiovascular disease: An update. Inflamm. Res. 2020;69:975–988. PubMed
Trinchieri G. Interleukin-12 and the regulation of innate resistance and adaptive immunity. Nat. Rev. Immunol. 2003;3:133–146. PubMed
Deshmane SL, Kremlev S, Amini S, Sawaya BE. Monocyte chemoattractant protein-1 (MCP-1): An overview. J. Interf. Cytokine Res. 2009;29:313–325. PubMed PMC
Bousquenaud M, et al. Monocyte chemotactic protein 3 is a homing factor for circulating angiogenic cells. Cardiovasc. Res. 2012;94:519–525. PubMed
Liu J, et al. Eosinophils improve cardiac function after myocardial infarction. Nat. Commun. 2020;11:1–15. PubMed PMC
Sharma HS, Das DK. Role of cytokines in myocardial ischemia and reperfusion. Mediators Inflamm. 1997;6:175–183. PubMed PMC
Henein MY, Vancheri S, Longo G, Vancheri F. The role of inflammation in cardiovascular disease. Int. J. Mol. Sci. 2022;23:1–23. PubMed PMC
Szodoray P, et al. Th1/Th2 imbalance, measured by circulating and intracytoplasmic inflammatory cytokines—Immunological alterations in acute coronary syndrome and stable coronary artery disease. Scand. J. Immunol. 2006;64:336–344. PubMed
Zwaag J, Naaktgeboren R, Van Herwaarden AE, Pickkers P, Kox M. The effects of cold exposure training and a breathing exercise on the inflammatory response in humans: A pilot study. Psychosom. Med. 2022;84:457–467. PubMed PMC
Janský L, et al. Immune system of cold-exposed and cold-adapted humans. Eur. J. Appl. Physiol. Occup. Physiol. 1996;72:445–450. PubMed
Kasparova D, et al. Cardioprotective and nonprotective regimens of chronic hypoxia diversely affect the myocardial antioxidant systems. Physiol. Genomics. 2015;47:612–620. PubMed
Parulek J, Srámek M, Cerveanský M, Novotová M, Zahradník I. A cell architecture modeling system based on quantitative ultrastructural characteristics. Methods Mol. Biol. 2009;500:289–312. PubMed
Neckář J, et al. Selective replacement of mitochondrial DNA increases the cardioprotective effect of chronic continuous hypoxia in spontaneously hypertensive rats. Clin. Sci. 2017;131:865–881. PubMed
Porter C, et al. Human and mouse brown adipose tissue mitochondria have comparable UCP1 function. Cell Metab. 2016;24:246–255. PubMed PMC
Hahnova K, et al. β-Adrenergic signaling in rat heart is similarly affected by continuous and intermittent normobaric hypoxia. Gen. Physiol. Biophys. 2016;35:165–173. PubMed
Klevstig M, et al. Transgenic rescue of defective Cd36 enhances myocardial adenylyl cyclase signaling in spontaneously hypertensive rats. Pflugers Arch. Eur. J. Physiol. 2013;465:1477–1486. PubMed
Ihnatovych I, et al. Maturation of rat brain is accompanied by differential expression of the long and short splice variants of G(s)alpha protein: identification of cytosolic forms of G(s)alpha. J. Neurochem. 2001;79:88–97. PubMed
Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods. 2012;9:671–675. PubMed PMC
Kohutova J, et al. Anti-arrhythmic cardiac phenotype elicited by chronic intermittent hypoxia is associated with alterations in connexin-43 expression, phosphorylation, and distribution. Front. Endocrinol. (Lausanne) 2019;9:1–10. PubMed PMC
Manders EMM, Verbeek FJ, Aten JA. Measurement of co-localization of objects in dual-colour confocal images. J. Microsc. 1993;169:375–382. PubMed
Schindelin J, et al. Fiji: An open-source platform for biological-image analysis. Nat. Methods. 2012;9:676–682. PubMed PMC
R Core Team. R: A Language and Environment for Statistical Computing. https://www.r-project.org/ (R Foundation for Statistical Computing, 2021).
Sanz H, et al. drLumi: An open-source package to manage data, calibrate, and conduct quality control of multiplex bead-based immunoassays data analysis. PLoS One. 2017;12:1–18. PubMed PMC
KupcovaSkalnikova H, VodickovaKepkova K, Vodicka P. Luminex xMAP assay to quantify cytokines in cancer patient serum. Methods Mol. Biol. 2020;2108:65–88. PubMed
Gu Z, Eils R, Schlesner M. Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics. 2016;32:2847–2849. PubMed
Vu, V. Q. GitHub—vqv/ggbiplot: A Biplot Based on ggplot2. https://github.com/vqv/ggbiplot (2011).