Acclimation of Hairless Spontaneously Hypertensive Rat to Ambient Temperature Attenuates Hypertension-Induced Pro-Arrhythmic Downregulation of Cx43 in the Left Heart Ventricle of Males
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
2/0002/20, 2/0006/23; 2/0133/24
VEGA grants
APVV-21-0410
Slovak Research and Development Agency under the Contract no.
LUAUS23095
the INTER-EXCELLENCE program of the Ministry of Education, Youth, and Sports of the Czech Republic
PubMed
39766216
PubMed Central
PMC11674011
DOI
10.3390/biom14121509
PII: biom14121509
Knihovny.cz E-zdroje
- Klíčová slova
- arrhythmias, connexin43, females, hairless SHR, left and right heart ventricle, males,
- MeSH
- aklimatizace MeSH
- down regulace MeSH
- hypertenze * metabolismus MeSH
- konexin 43 * metabolismus genetika MeSH
- krysa rodu Rattus MeSH
- potkani inbrední SHR * MeSH
- potkani Wistar MeSH
- srdeční arytmie * metabolismus etiologie MeSH
- srdeční komory * metabolismus MeSH
- teplota * MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- Gja1 protein, rat MeSH Prohlížeč
- konexin 43 * MeSH
OBJECTIVES: Due to poor treatment adherence and lifestyle-based interventions, chronic hypertension is a dominant risk factor predisposing individuals to heart failure and malignant arrhythmias. We investigated the impact of the postnatal acclimation of hairless SHR to ambient temperature that is, for them, below thermoneutrality, on the electrical coupling protein connexin-43 (Cx43) and pro-fibrotic markers in both heart ventricles of male and female hairless SHR rats compared to the wild SHR. METHODS: Some 6-month-acclimated male and female hairless SHR as well as age- and sex-matched wild SHR were included and compared with the non-hypertensive Wistar strain. The left and right heart ventricles were examined for Cx43 topology, myocardial structure, and the histochemistry of capillaries. The protein levels of Cx43, relevant protein kinases, and extracellular matrix proteins (ECMs) were determined by immunoblotting. MMP-2 activity was assessed via zymography, and susceptibility to malignant arrhythmias was tested ex vivo. RESULTS: Cx43 and its phosphorylated variant pCx43368 were significantly reduced in the left heart ventricles of wild SHR males, while to a lesser extent in the hairless SHR. In contrast, these proteins were not significantly altered in the right heart ventricles of males or in both heart ventricles in females, regardless of the rat strain. Pro-arrhythmic Cx43 topology was detected in the left heart ventricle of wild SHR and to a lesser extent in hairless SHR males. TGFβ protein was significantly increased only in the left ventricle of the wild SHR males. MMP-2 activity was increased in the right ventricle but not in the left ventricles of both males and females, regardless of the rat strain. CONCLUSIONS: The findings indicate that the postnatal acclimation of hairless SHR to ambient temperature hampers the downregulation of Cx43 in the left heart ventricle compared to wild SHR males. The decline of Cx43 was much less pronounced in females and not observed in the right heart ventricles, regardless of the rat strain. It may impact the susceptibility of the heart to malignant arrhythmias.
Centre of Experimental Medicine Slovak Academy of Sciences 841 04 Bratislava Slovakia
Institute of Physiology v v i Academy of Sciences of the Czech Republic 14220 Prague Czech Republic
Zobrazit více v PubMed
Kario K., Okura A., Hoshide S., Mogi M. The WHO Global report 2023 on hypertension warning the emerging hypertension burden in globe and its treatment strategy. Hypertens. Res. 2024;47:1099–1102. doi: 10.1038/s41440-024-01622-w. PubMed DOI
Unger T., Borghi C., Charchar F., Khan N.A., Poulter N.R., Prabhakaran D., Ramirez A., Schlaich M., Stergiou G.S., Tomaszewski M., et al. 2020 International Society of Hypertension Global Hypertension Practice Guidelines. Hypertension. 2020;75:1334–1357. doi: 10.1161/HYPERTENSIONAHA.120.15026. PubMed DOI
Marazzato J., Blasi F., Golino M., Verdecchia P., Angeli F., De Ponti R. Hypertension and Arrhythmias: A Clinical Overview of the Pathophysiology-Driven Management of Cardiac Arrhythmias in Hypertensive Patients. J. Cardiovasc. Dev. Dis. 2022;9:110. doi: 10.3390/jcdd9040110. PubMed DOI PMC
Zhou B., Carrillo-Larco R.M., Danaei G., Riley L.M., Paciorek C.J., Stevens G.A., Gregg E.W., Bennett J.E., Solomon B., Singleton R.K., et al. Worldwide trends in hypertension prevalence and progress in treatment and control from 1990 to 2019: A pooled analysis of 1201 population-representative studies with 104 million participants. Lancet. 2021;398:957–980. doi: 10.1016/S0140-6736(21)01330-1. PubMed DOI PMC
Naderi H., Ramírez J., Van Duijvenboden S., Pujadas E.R., Aung N., Wang L., Anwar Ahmed Chahal C., Lekadir K., Petersen S.E., Munroe P.B. Predicting left ventricular hypertrophy from the 12-lead electrocardiogram in the UK Biobank imaging study using machine learning. Eur. Heart J.-Digit. Health. 2023;4:316–324. doi: 10.1093/ehjdh/ztad037. PubMed DOI PMC
Mogi M., Hoshide S., Kario K. Optimal blood pressure and improvement of achievement rate. Hypertens. Res. 2023;46:2445–2446. doi: 10.1038/s41440-023-01411-x. PubMed DOI
Dzau V.J., Hodgkinson C.P. Precision Hypertension. Hypertension. 2024;81:702–708. doi: 10.1161/HYPERTENSIONAHA.123.21710. PubMed DOI
Sykora M., Andelova K., Szeiffova Bacova B., Egan Benova T., Martiskova A., Knezl V., Tribulova N. Hypertension Induces Pro-arrhythmic Cardiac Connexome Disorders: Protective Effects of Treatment. Biomolecules. 2023;13:330. doi: 10.3390/biom13020330. PubMed DOI PMC
Thomas D., Christ T., Fabritz L., Goette A., Hammwöhner M., Heijman J., Kockskämper J., Linz D., Odening K.E., Schweizer P.A., et al. German Cardiac Society Working Group on Cellular Electrophysiology state-of-the-art paper: Impact of molecular mechanisms on clinical arrhythmia management. Clin. Res. Cardiol. 2019;108:577–599. doi: 10.1007/s00392-018-1377-1. PubMed DOI
Han B., Trew M.L., Zgierski-Johnston C.M. Cardiac conduction velocity, remodeling and arrhythmogenesis. Cells. 2021;10:2923. doi: 10.3390/cells10112923. PubMed DOI PMC
Dhein S., Salameh A. Remodeling of cardiac gap junctional cell–cell coupling. Cells. 2021;10:2422. doi: 10.3390/cells10092422. PubMed DOI PMC
Verheule S., Schotten U. Electrophysiological consequences of cardiac fibrosis. Cells. 2021;10:3220. doi: 10.3390/cells10113220. PubMed DOI PMC
Fedorov V.V., Li L., Glukhov A., Shishkina I., Aliev R.R., Mikheeva T., Nikolski V.P., Rosenshtraukh L.V., Efimov I.R. Hibernator Citellus undulatus maintains safe cardiac conduction and is protected against tachyarrhythmias during extreme hypothermia: Possible role of Cx43 and Cx45 up-regulation. Heart Rhythm. 2005;2:966–975. doi: 10.1016/j.hrthm.2005.06.012. PubMed DOI
Fedorov V.V., Glukhov A.V., Sudharshan S., Egorov Y., Rosenshtraukh L.V., Efimov I.R. Electrophysiological mechanisms of antiarrhythmic protection during hypothermia in winter hibernating versus nonhibernating mammals. Heart Rhythm. 2008;5:1587–1596. doi: 10.1016/j.hrthm.2008.08.030. PubMed DOI PMC
Saitongdee P., Milner P., Becker D.L., Knight G.E., Burnstock G. Increased connexin43 gap junction protein in hamster cardiomyocytes during cold acclimatization and hibernation. Cardiovasc. Res. 2000;47:108–115. doi: 10.1016/S0008-6363(00)00051-1. PubMed DOI
Tibenska V., Benesova A., Vebr P., Liptakova A., Hejnová L., Elsnicová B., Drahota Z., Hornikova D., Galatík F., Kolar D., et al. Gradual cold acclimation induces cardioprotection without affecting β- adrenergic receptor-mediated adenylyl cyclase signaling. J. Appl. Physiol. 2020;128:1023–1032. doi: 10.1152/japplphysiol.00511.2019. PubMed DOI
Marvanova A., Kasik P., Elsnicova B., Tibenska V., Galatik F., Hornikova D., Zvolska V., Vebr P., Vodicka P., Hejnova L., et al. Continuous short-term acclimation to moderate cold elicits cardioprotection in rats, and alters β-adrenergic signaling and immune status. Sci. Rep. 2023;13:18287. doi: 10.1038/s41598-023-44205-4. PubMed DOI PMC
Nassal M.M.J., Wan X., Dale Z., Deschênes I., Wilson L.D., Piktel J.S. Mild hypothermia preserves myocardial conduction during ischemia by maintaining gap junction intracellular communication and Na+ channel function. Am. J. Physiol.-Heart Circ. Physiol. 2017;312:H886–H895. doi: 10.1152/ajpheart.00298.2016. PubMed DOI PMC
Trnovská J., Šilhavỳ J., Zídek V., Šimáková M., Mlejnek P., Landa V., Eigner S., Eigner Henke K., Škop V., Oliyarnyk O., et al. Gender-related effects on substrate utilization and metabolic adaptation in hairless spontaneously hypertensive rat. Physiol. Res. 2015;64:51–60. doi: 10.33549/physiolres.932823. PubMed DOI
Andelova K., Szeiffova Bacova B., Sykora M., Pavelka S., Rauchova H., Tribulova N. Cardiac Cx43 Signaling Is Enhanced and TGF-β1/SMAD2/3 Suppressed in Response to Cold Acclimation and Modulated by Thyroid Status in Hairless SHRM. Biomedicines. 2022;10:1707. doi: 10.3390/biomedicines10071707. PubMed DOI PMC
Galis P., Bartosova L., Farkasova V., Szobi A., Horvath C., Kovacova D., Adameova A., Rajtik T. Intermittent Hypoxic Preconditioning Plays a Cardioprotective Role in Doxorubicin-Induced Cardiomyopathy. Cardiovasc. Toxicol. 2023;23:185–197. doi: 10.1007/s12012-023-09793-7. PubMed DOI
Lee W.C., Lin Y.W., Shih J.Y., Chen Z.C., Wu N.C., Chang W.T. Ivabradine could not decrease mitral regurgitation triggered atrial fibrosis and fibrillation compared with carvedilol. ESC Heart Fail. 2024;11:251–260. doi: 10.1002/ehf2.14577. PubMed DOI PMC
Benova T., Viczenczova C., Radosinska J., Bacova B., Knezl V., Dosenko V., Weismann P., Zeman M., Navarova J., Tribulova N. Melatonin attenuates hypertension-related proarrhythmic myocardial maladaptation of connexin-43 and propensity of the heart to lethal arrhythmias. Can. J. Physiol. Pharmacol. 2013;91:633–639. doi: 10.1139/cjpp-2012-0393. PubMed DOI
Koyama T., Xie Z., Gao M., Suzuki J., Batra S. Adaptive changes in the capillary network in the left ventricle of rat heart. Jpn. J. Physiol. 1998;48:229–241. doi: 10.2170/jjphysiol.48.229. PubMed DOI
Bacova B.S., Viczenczova C., Andelova K., Sykora M., Chaudagar K., Barancik M., Adamcova M., Knezl V., Benova T.E., Weismann P., et al. Antiarrhythmic effects of melatonin and omega-3 are linked with protection of myocardial cx43 topology and suppression of fibrosis in catecholamine stressed normotensive and hypertensive rats. Antioxidants. 2020;9:546. doi: 10.3390/antiox9060546. PubMed DOI PMC
Bacova B.S., Radosinska J., Wallukat G., Barancik M., Wallukat A., Knezl V., Sykora M., Paulis L., Tribulova N. Suppression of β1-adrenoceptor autoantibodies is involved in the antiarrhythmic effects of omega-3 fatty acids in male and female hypertensive rats. Int. J. Mol. Sci. 2020;21:526. doi: 10.3390/ijms21020526. PubMed DOI PMC
Lendeckel U., Arndt M., Wrenger S., Nepple K., Huth C., Ansorge S., Klein H.U., Goette A. Expression and activity of ectopeptidases in fibrillating human atria. J. Mol. Cell. Cardiol. 2001;33:1273–1281. doi: 10.1006/jmcc.2001.1389. PubMed DOI
Blenck C.L., Harvey P.A., Reckelhoff J.F., Leinwand L.A. The importance of biological sex and estrogen in rodent models of cardiovascular health and disease. Circ. Res. 2016;118:1294–1312. doi: 10.1161/CIRCRESAHA.116.307509. PubMed DOI PMC
Linde C., Bongiorni M.G., Birgersdotter-Green U., Curtis A.B., Deisenhofer I., Furokawa T., Gillis A.M., Haugaa K.H., Lip G.Y.H., Van Gelder I., et al. Sex differences in cardiac arrhythmia: A consensus document of the european heart rhythm association, endorsed by the heart rhythm society and Asia pacific heart rhythm society. Europace. 2018;20:1565–1565ao. doi: 10.1093/europace/euy067. PubMed DOI
Chi J., Wu Z., Choi C.H.J., Nguyen L., Tegegne S., Ackerman S.E., Crane A., Marchildon F., Tessier-Lavigne M., Cohen P. Three-Dimensional Adipose Tissue Imaging Reveals Regional Variation in Beige Fat Biogenesis and PRDM16-Dependent Sympathetic Neurite Density. Cell Metab. 2018;27:226–236.e3. doi: 10.1016/j.cmet.2017.12.011. PubMed DOI
Rassler B., Hawlitschek C., Brendel J., Zimmer H. How Do Young and Old Spontaneously Hypertensive Rats Respond to Antihypertensive Therapy? Comparative Studies on the Effects of Combined Captopril and Nifedipine Treatment. Biomedicines. 2022;10:3059. doi: 10.3390/biomedicines10123059. PubMed DOI PMC
Klimas J., Stankovicova T., Kyselovic J., Bacharova L. Prolonged QT interval is associated with blood pressure rather than left ventricular mass in spontaneously hypertensive rats. Clin. Exp. Hypertens. 2008;30:475–485. doi: 10.1080/10641960802443399. PubMed DOI
Adabag S., Gravely A., Kattel S., Buelt-Gebhardt M., Westanmo A. QT prolongation predicts all-cause mortality above and beyond a validated risk score. J. Electrocardiol. 2024;83:1–3. doi: 10.1016/j.jelectrocard.2023.12.010. PubMed DOI
Kollarova M., Puzserova A., Balis P., Radosinska D., Tothova L., Bartekova M., Barancik M., Radosinska J. Age-and phenotype-dependent changes in circulating MMP-2 and MMP-9 activities in normotensive and hypertensive rats. Int. J. Mol. Sci. 2020;21:7286. doi: 10.3390/ijms21197286. PubMed DOI PMC
Camici P.G., Tschöpe C., Di Carli M.F., Rimoldi O., Van Linthout S. Coronary microvascular dysfunction in hypertrophy and heart failure. Cardiovasc. Res. 2020;116:806–816. doi: 10.1093/cvr/cvaa023. PubMed DOI
La Vecchia G., Fumarulo I., Caffè A., Chiatto M., Montone R.A., Aspromonte N. Microvascular Dysfunction across the Spectrum of Heart Failure Pathology: Pathophysiology, Clinical Features and Therapeutic Implications. Int. J. Mol. Sci. 2024;25:7628. doi: 10.3390/ijms25147628. PubMed DOI PMC
Lambeir A.M., Durinx C., Scharpé S., De Meester I. Dipeptidyl-peptidase IV from bench to bedside: An update on structural properties, functions, and clinical aspects of the enzyme DPP IV. Crit. Rev. Clin. Lab. Sci. 2003;40:209–294. doi: 10.1080/713609354. PubMed DOI
Eguchi S., Torimoto K., Adebiyi A., Kanthakumar P., Bomfim G.F., Wenceslau C.F., Dahlen S.A., Osei-Owusu P. Milestone Papers on Signal Transduction Mechanisms of Hypertension and Its Complications. Hypertension. 2024;81:977–990. doi: 10.1161/HYPERTENSIONAHA.123.21365. PubMed DOI PMC
Yang B., Lin H., Xiao J., Lu Y., Luo X., Li B., Zhang Y., Xu C., Bai Y., Wang H., et al. The muscle-specific microRNA miR-1 regulates cardiac arrhythmogenic potential by targeting GJA1 and KCNJ2. Nat. Med. 2007;13:486–491. doi: 10.1038/nm1569. PubMed DOI
Jin Y., Zhou T.Y., Cao J.N., Feng Q.T., Fu Y.J., Xu X., Yang C.J. MicroRNA-206 Downregulates Connexin43 in Cardiomyocytes to Induce Cardiac Arrhythmias in a Transgenic Mouse Model. Heart Lung Circ. 2019;28:1755–1761. doi: 10.1016/j.hlc.2018.09.008. PubMed DOI
Xu R., Li S., Guo S., Zhao Q., Abramson M.J., Li S., Guo Y. Environmental temperature and human epigenetic modifications: A systematic review. Environ. Pollut. 2020;259:113840. doi: 10.1016/j.envpol.2019.113840. PubMed DOI