Soluble Guanylate Cyclase Stimulator, BAY41-8543: A Promising Approach for the Treatment of Chronic Heart Failure Caused by Pressure and Volume Overload

. 2025 Apr ; 13 (2) : e70087.

Jazyk angličtina Země Spojené státy americké Médium print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40159447

Grantová podpora
NU23J-02-00015 Ministry of the Czech Republic
22-0264 Slovak Research and Development Agency
21-0410 Slovak Research and Development Agency
VV-MVP-24-0278 Slovak Research and Development Agency
09I03-03 V04-00437 Scholarships for Excellent R2-R4 Researchers
LX22NPO5104 National Institute for Research of Metabolic and Cardiovascular Diseases
2/0016/23 Scientific Grant Agency of the Ministry of Education, Research, Development and Youth of the Slovak Republic and Slovak Academy of Sciences
2/0006/23 Scientific Grant Agency of the Ministry of Education, Research, Development and Youth of the Slovak Republic and Slovak Academy of Sciences
2/0133/24 Scientific Grant Agency of the Ministry of Education, Research, Development and Youth of the Slovak Republic and Slovak Academy of Sciences

Heart failure (HF) is a leading cause of morbidity and mortality, often driven by prolonged exposure to pathological stimuli such as pressure and volume overload. These factors contribute to excessive oxidative stress, adverse cardiac remodeling, and dysregulation of the nitric oxide-soluble guanylate cyclase-cyclic guanosine monophosphate (NO-sGC-cGMP) signaling pathway. Given the urgent need for effective treatments, this study investigated the potential of sGC stimulators to mitigate HF progression. We utilized male hypertensive Ren-2 transgenic (TGR) rats and a volume-overload HF model induced by an aortocaval fistula (ACF). Rats received the sGC stimulator BAY 41-8543 (3 mg/kg/day) for 30 weeks, while normotensive Hannover Sprague-Dawley rats served as controls. At the study endpoint (40 weeks of age), left ventricular tissue was analyzed using mass spectrometry, Western blotting, and histological assessment. TGR rats treated with sGC stimulators exhibited a significant increase in key antioxidant proteins (SOD1, CH10, ACSF2, NDUS1, DHE3, GSTM2, and PCCA), suggesting enhanced resistance to oxidative stress. However, sGC stimulator treatment also upregulated extracellular matrix remodeling markers (MMP-2, TGF-β, and SMAD2/3), which are typically associated with fibrosis. Despite this, Masson's trichrome staining revealed reduced collagen deposition in both TGR and TGR-ACF rats receiving sGC stimulators. Notably, all untreated TGR-ACF rats succumbed before the study endpoint, preventing direct assessment of sGC stimulator effects in advanced HF. These findings highlight the therapeutic potential of sGC stimulators in HF, particularly through their antioxidant effects. However, their concurrent influence on fibrosis warrants further investigation to optimize treatment strategies.

Zobrazit více v PubMed

Bozkurt B., Ahmad T., Alexander K. M., et al., “Heart Failure Epidemiology and Outcomes Statistics: A Report of the Heart Failure Society of America,” Journal of Cardiac Failure 29, no. 10 (2023): 1412–1451, 10.1016/j.cardfail.2023.07.006. PubMed DOI PMC

Shahim B., Kapelios C. J., Savarese G., and Lund L. H., “Global Public Health Burden of Heart Failure: An Updated Review,” Cardiac Failure Review 9 (2023): e11, 10.15420/cfr.2023.05. PubMed DOI PMC

Golla M. S. G., Hajouli S., and Ludhwani D., Heart Failure and Ejection Fraction Statpearls, (2024), http://www.ncbi.nlm.nih.gov/pubmed/37011077.

Marti C. N., Gheorghiade M., Kalogeropoulos A. P., Georgiopoulou V. V., Quyyumi A. A., and Butler J., “Endothelial Dysfunction, Arterial Stiffness, and Heart Failure,” Journal of the American College of Cardiology 60, no. 16 (2012): 1455–1469, 10.1016/j.jacc.2011.11.082. PubMed DOI

Förstermann U. and Münzel T., “Endothelial Nitric Oxide Synthase in Vascular Disease,” Circulation 113, no. 13 (2006): 1708–1714, 10.1161/CIRCULATIONAHA.105.602532. PubMed DOI

Friebe A., Sandner P., and Schmidtko A., “cGMP: A Unique 2nd Messenger Molecule – Recent Developments in cGMP Research and Development,” Naunyn‐Schmiedeberg's Archives of Pharmacology 393, no. 2 (2020): 287–302, 10.1007/s00210-019-01779-z. PubMed DOI PMC

Premer C., Kanelidis A. J., Hare J. M., and Schulman I. H., “Rethinking Endothelial Dysfunction as a Crucial Target in Fighting Heart Failure,” Mayo Clinic Proceedings. Innovations, Quality & Outcomes 3, no. 1 (2019): 1–13, 10.1016/j.mayocpiqo.2018.12.006. PubMed DOI PMC

Tsai E. J. and Kass D. A., “Cyclic GMP Signaling in Cardiovascular Pathophysiology and Therapeutics,” Pharmacology & Therapeutics 122, no. 3 (2009): 216–238, 10.1016/j.pharmthera.2009.02.009. PubMed DOI PMC

Mollace R., Scarano F., Bava I., et al., “Modulation of the Nitric Oxide/cGMP Pathway in Cardiac Contraction and Relaxation: Potential Role in Heart Failure Treatment,” Pharmacological Research 196 (2023): 106931, 10.1016/j.phrs.2023.106931. PubMed DOI

Breitenstein S., Roessig L., Sandner P., and Lewis K. S., “Novel sGC Stimulators and sGC Activators for the Treatment of Heart Failure,” Handbook of Experimental Pharmacology 243 (2017): 225–247, 10.1007/164_2016_100. PubMed DOI

Paul T., Salazar‐Degracia A., Peinado V. I., et al., “Soluble Guanylate Cyclase Stimulation Reduces Oxidative Stress in Experimental Chronic Obstructive Pulmonary Disease,” PLoS One 13, no. 1 (2018): e0190628, 10.1371/journal.pone.0190628. PubMed DOI PMC

Sharma A., Choi J., Sim L., et al., “Ameliorating Diabetes‐Associated Atherosclerosis and Diabetic Nephropathy Through Modulation of Soluble Guanylate Cyclase,” Frontiers in Cardiovascular Medicine 10 (2023): 1220095, 10.3389/fcvm.2023.1220095. PubMed DOI PMC

Takimoto E. and Kass D. A., “Role of Oxidative Stress in Cardiac Hypertrophy and Remodeling,” Hypertension 49, no. 2 (2007): 241–248, 10.1161/01.HYP.0000254415.31362.a7. PubMed DOI

Shah A. K., Bhullar S. K., Elimban V., and Dhalla N. S., “Oxidative Stress as A Mechanism for Functional Alterations in Cardiac Hypertrophy and Heart Failure,” Antioxidants 10, no. 6 (2021): 931, 10.3390/antiox10060931. PubMed DOI PMC

Honetschlägerová Z., Hejnová L., Novotný J., Marek A., and Červenka L., “Effects of Renal Denervation on the Enhanced Renal Vascular Responsiveness to Angiotensin II in High‐Output Heart Failure: Angiotensin II Receptor Binding Assessment and Functional Studies in Ren‐2 Transgenic Hypertensive Rats,” Biomedicine 9, no. 12 (2021): 1803, 10.3390/biomedicines9121803. PubMed DOI PMC

Kala P., Miklovič M., Jíchová Š., et al., “Effects of Epoxyeicosatrienoic Acid‐Enhancing Therapy on the Course of Congestive Heart Failure in Angiotensin II‐Dependent Rat Hypertension: From mRNA Analysis Towards Functional in Vivo Evaluation,” Biomedicine 9, no. 8 (2021): 1053, 10.3390/biomedicines9081053. PubMed DOI PMC

Langheinrich M., “The Hypertensive Ren‐2 Transgenic Rat TGR (mREN2) 27 in Hypertension Research Characteristics and Functional Aspects,” American Journal of Hypertension 9, no. 5 (1996): 506–512, 10.1016/0895-7061(95)00400-9. PubMed DOI

Kilkenny C., Browne W. J., Cuthill I. C., Emerson M., and Altman D. G., “Improving Bioscience Research Reporting: The ARRIVE Guidelines for Reporting Animal Research,” Osteoarthritis and Cartilage 20, no. 4 (2012): 256–260, 10.1016/j.joca.2012.02.010. PubMed DOI

Abassi Z., Goltsman I., Karram T., Winaver J., and Hoffman A., “Aortocaval Fistula in Rat: A Unique Model of Volume‐Overload Congestive Heart Failure and Cardiac Hypertrophy,” BioMed Research International 2011, no. 1 (2011): 729497, 10.1155/2011/729497. PubMed DOI PMC

Gawrys O., Husková Z., Škaroupková P., et al., “The Treatment With sGC Stimulator Improves Survival of Hypertensive Rats in Response to Volume‐Overload Induced by Aorto‐Caval Fistula,” Naunyn‐Schmiedeberg's Archives of Pharmacology 396, no. 12 (2023): 3757–3773, 10.1007/s00210-023-02561-y. PubMed DOI PMC

Andelova N., Waczulikova I., Talian I., Sykora M., and Ferko M., “mPTP Proteins Regulated by Streptozotocin‐Induced Diabetes Mellitus Are Effectively Involved in the Processes of Maintaining Myocardial Metabolic Adaptation,” International Journal of Molecular Sciences 21, no. 7 (2020): 2622, 10.3390/ijms21072622. PubMed DOI PMC

Szeiffová Bačova B., Egan Beňová T., Viczenczová C., et al., “Cardiac Connexin‐43 and PKC Signaling in Rats With Altered Thyroid Status Without and With Omega‐3 Fatty Acids Intake,” Physiological Research 65, no. Suppl 1 (2016): 77–90. PubMed

Andelova K., Szeiffova Bacova B., Sykora M., Pavelka S., Rauchova H., and Tribulova N., “Cardiac Cx43 Signaling Is Enhanced and TGF‐β1/SMAD2/3 Suppressed in Response to Cold Acclimation and Modulated by Thyroid Status in Hairless SHRM,” Biomedicine 10, no. 7 (2022): 1707, 10.3390/biomedicines10071707. PubMed DOI PMC

Andelova K., Sykora M., Farkasova V., et al., “Acclimation of Hairless Spontaneously Hypertensive Rat to Ambient Temperature Attenuates Hypertension‐Induced pro‐Arrhythmic Downregulation of Cx43 in the Left Heart Ventricle of Males,” Biomolecules 14, no. 12 (2024): 1509, 10.3390/biom14121509. PubMed DOI PMC

Uchihashi M., Hoshino A., Okawa Y., et al., “Cardiac‐Specific Bdh1 Overexpression Ameliorates Oxidative Stress and Cardiac Remodeling in Pressure Overload–Induced Heart Failure,” Circulation: Heart Failure 10, no. 12 (2017): e004417, 10.1161/CIRCHEARTFAILURE.117.004417. PubMed DOI

Harding S. D., Sharman J. L., Faccenda E., et al., “The IUPHAR/BPS Guide to PHARMACOLOGY in 2018: Updates and Expansion to Encompass the New Guide to IMMUNOPHARMACOLOGY,” Nucleic Acids Research 46, no. D1 (2018): D1091–D1106, 10.1093/nar/gkx1121. PubMed DOI PMC

Alexander S. P. H., Kelly E., Mathie A. A., et al., “The Concise Guide to PHARMACOLOGY 2023/24: Introduction and Other Protein Targets,” British Journal of Pharmacology 180, no. S2 (2023): 6176, 10.1111/bph.16176. PubMed DOI

Stasch J., Alonso‐Alija C., Apeler H., et al., “Pharmacological Actions of a Novel NO‐Independent Guanylyl Cyclase Stimulator, BAY 41‐8543: In Vitro Studies,” British Journal of Pharmacology 135, no. 2 (2002): 333–343, 10.1038/sj.bjp.0704484. PubMed DOI PMC

Boerrigter G., Costello‐Boerrigter L. C., Cataliotti A., et al., “Cardiorenal and Humoral Properties of a Novel Direct Soluble Guanylate Cyclase Stimulator BAY 41‐2272 in Experimental Congestive Heart Failure,” Circulation 107, no. 5 (2003): 686–689, 10.1161/01.CIR.0000055737.15443.F8. PubMed DOI

Mittendorf J., Weigand S., Alonso‐Alija C., et al., “Discovery of Riociguat (BAY 63‐2521): A Potent, Oral Stimulator of Soluble Guanylate Cyclase for the Treatment of Pulmonary Hypertension,” ChemMedChem 4, no. 5 (2009): 853–865, 10.1002/cmdc.200900014. PubMed DOI

Lang N. N., Dobbin S. J. H., and Petrie M. C., “Vericiguat in Worsening Heart Failure: Agonising Over, or Celebrating, Agonism in the VICTORIA Trial,” Cardiovascular Research 116, no. 12 (2020): e152–e155, 10.1093/cvr/cvaa247. PubMed DOI PMC

Sandner P., Zimmer D. P., Milne G. T., Follmann M., Hobbs A., and Stasch J. P., “Soluble Guanylate Cyclase Stimulators and Activators,” Handbook of Experimental Pharmacology 264 (2018): 355–394, 10.1007/164_2018_197. PubMed DOI

Khan M. S., Xu H., Fonarow G. C., et al., “Applicability of Vericiguat to Patients Hospitalized for Heart Failure in the United States,” JACC: Heart Failure 11, no. 2 (2023): 211–223, 10.1016/j.jchf.2022.11.007. PubMed DOI PMC

Xia J., Hui N., Tian L., et al., “Development of Vericiguat: The First Soluble Guanylate Cyclase (sGC) Stimulator Launched for Heart Failure With Reduced Ejection Fraction (HFrEF),” Biomedicine & Pharmacotherapy 149 (2022): 112894, 10.1016/j.biopha.2022.112894. PubMed DOI

Campbell D. J., Rong P., Kladis A., Rees B., Ganten D., and Skinner S. L., “Angiotensin and Bradykinin Peptides in the TGR(mRen‐2)27 Rat,” Hypertension 25, no. 5 (1995): 1014–1020, 10.1161/01.HYP.25.5.1014. PubMed DOI

Červenka L., Melenovský V., Husková Z., Škaroupková P., Nishiyama A., and Sadowski J., “Inhibition of Soluble Epoxide Hydrolase Counteracts the Development of Renal Dysfunction and Progression of Congestive Heart Failure in Ren‐2 Transgenic Hypertensive Rats With Aorto‐Caval Fistula,” Clinical and Experimental Pharmacology & Physiology 42, no. 7 (2015): 795–807, 10.1111/1440-1681.12419. PubMed DOI

Bœuf‐Gibot S., Pereira B., Imbert J., et al., “Benefits and Adverse Effects of ACE Inhibitors in Patients With Heart Failure With Reduced Ejection Fraction: A Systematic Review and Meta‐Analysis,” European Journal of Clinical Pharmacology 77, no. 3 (2021): 321–329, 10.1007/s00228-020-03018-4. PubMed DOI

van der Pol A., van Gilst W. H., Voors A. A., and van der Meer P., “Treating Oxidative Stress in Heart Failure: Past, Present and Future,” European Journal of Heart Failure 21, no. 4 (2019): 425–435, 10.1002/ejhf.1320. PubMed DOI PMC

Schaper J., Kostin S., Hein S., Elsässer A., Arnon E., and Zimmermann R., “Structural Remodelling in Heart Failure,” Experimental and Clinical Cardiology 7, no. 2–3 (2002): 64–68, http://www.ncbi.nlm.nih.gov/pubmed/19649225. PubMed PMC

Rababa'h A. M., Guillory A. N., Mustafa R., and Hijjawi T., “Oxidative Stress and Cardiac Remodeling: An Updated Edge,” Current Cardiology Reviews 14, no. 1 (2018): 53–59, 10.2174/1573403X14666180111145207. PubMed DOI PMC

Geiger B., Tokuyasu K. T., Dutton A. H., and Singer S. J., “Vinculin, an Intracellular Protein Localized at Specialized Sites Where Microfilament Bundles Terminate at Cell Membranes,” Proceedings of the National Academy of Sciences 77, no. 7 (1980): 4127–4131, 10.1073/pnas.77.7.4127. PubMed DOI PMC

Heling A., Zimmermann R., Kostin S., et al., “Increased Expression of Cytoskeletal, Linkage, and Extracellular Proteins in Failing Human Myocardium,” Circulation Research 86, no. 8 (2000): 846–853, 10.1161/01.RES.86.8.846. PubMed DOI

Zou X., Ouyang H., Lin F., et al., “MYBPC3 Deficiency in Cardiac Fibroblasts Drives Their Activation and Contributes to Fibrosis,” Cell Death & Disease 13, no. 11 (2022): 948, 10.1038/s41419-022-05403-6. PubMed DOI PMC

Qi B., Song L., Hu L., et al., “Cardiac‐Specific Overexpression of Ndufs1 Ameliorates Cardiac Dysfunction After Myocardial Infarction by Alleviating Mitochondrial Dysfunction and Apoptosis,” Experimental & Molecular Medicine 54, no. 7 (2022): 946–960, 10.1038/s12276-022-00800-5. PubMed DOI PMC

Huang X., Qu R., Ouyang J., Zhong S., and Dai J., “An Overview of the Cytoskeleton‐Associated Role of PDLIM5,” Frontiers in Physiology 11 (2020): 975, 10.3389/fphys.2020.00975. PubMed DOI PMC

McGarrah R. W. and White P. J., “Branched‐Chain Amino Acids in Cardiovascular Disease,” Nature Reviews. Cardiology 20, no. 2 (2023): 77–89, 10.1038/s41569-022-00760-3. PubMed DOI PMC

Wang S., Liang Y., and Dai C., “Metabolic Regulation of Fibroblast Activation and Proliferation During Organ Fibrosis,” Kidney Diseases 8, no. 2 (2022): 115–125, 10.1159/000522417. PubMed DOI PMC

Zhang S., Zeng X., Ren M., Mao X., and Qiao S., “Novel Metabolic and Physiological Functions of Branched Chain Amino Acids: A Review,” Journal of Animal Science and Biotechnology 8, no. 1 (2017): 10, 10.1186/s40104-016-0139-z. PubMed DOI PMC

Du X., You H., Li Y., et al., “Relationships Between Circulating Branched Chain Amino Acid Concentrations and Risk of Adverse Cardiovascular Events in Patients With STEMI Treated With PCI,” Scientific Reports 8, no. 1 (2018): 15809, 10.1038/s41598-018-34245-6. PubMed DOI PMC

Tuleta I., Hanna A., Humeres C., et al., “Fibroblast‐Specific TGF‐β Signaling Mediates Cardiac Dysfunction, Fibrosis, and Hypertrophy in Obese Diabetic Mice,” Cardiovascular Research 120, no. 16 (2024): 2047–2063, 10.1093/cvr/cvae210. PubMed DOI

Fan D., Takawale A., Lee J., and Kassiri Z., “Cardiac Fibroblasts, Fibrosis and Extracellular Matrix Remodeling in Heart Disease,” Fibrogenesis & Tissue Repair 5, no. 1 (2012): 15, 10.1186/1755-1536-5-15. PubMed DOI PMC

Besler C., Lang D., Urban D., et al., “Plasma and Cardiac Galectin‐3 in Patients With Heart Failure Reflects Both Inflammation and Fibrosis: Implications for Its Use as a Biomarker,” Circulation: Heart Failure 10, no. 3 (2017): e003804, 10.1161/CIRCHEARTFAILURE.116.003804. PubMed DOI

Andelova N., Waczulikova I., Kunstek L., et al., “Dichloroacetate as a Metabolic Modulator of Heart Mitochondrial Proteome Under Conditions of Reduced Oxygen Utilization,” Scientific Reports 12, no. 1 (2022): 16348, 10.1038/s41598-022-20696-5. PubMed DOI PMC

Petrak J., Pospisilova J., Sedinova M., et al., “Proteomic and Transcriptomic Analysis of Heart Failure due to Volume Overload in a Rat Aorto‐Caval Fistula Model Provides Support for New Potential Therapeutic Targets—Monoamine Oxidase A and Transglutaminase 2,” Proteome Science 9, no. 1 (2011): 69, 10.1186/1477-5956-9-69. PubMed DOI PMC

Bugger H., Schwarzer M., Chen D., et al., “Proteomic Remodelling of Mitochondrial Oxidative Pathways in Pressure Overload‐Induced Heart Failure,” Cardiovascular Research 85, no. 2 (2010): 376–384, 10.1093/cvr/cvp344. PubMed DOI

Chess D. J., Xu W., Khairallah R., et al., “The Antioxidant Tempol Attenuates Pressure Overload‐Induced Cardiac Hypertrophy and Contractile Dysfunction in Mice Fed a High‐Fructose Diet,” American Journal of Physiology. Heart and Circulatory Physiology 295, no. 6 (2008): H2223–H2230, 10.1152/ajpheart.00563.2008. PubMed DOI PMC

Dhalla A. K. and Singal P. K., “Antioxidant Changes in Hypertrophied and Failing Guinea Pig Hearts,” American Journal of Physiology 266, no. 4 (1994): H1280–H1285, 10.1152/ajpheart.1994.266.4.H1280. PubMed DOI

Cotter D. G., Schugar R. C., and Crawford P. A., “Ketone Body Metabolism and Cardiovascular Disease,” American Journal of Physiology 304, no. 8 (2013): H1060–H1076, 10.1152/ajpheart.00646.2012. PubMed DOI PMC

Chu Y., Zhang C., and Xie M., “Beta‐Hydroxybutyrate, Friend or Foe for Stressed Hearts,” Frontiers in Aging 2 (2021): 681513, 10.3389/fragi.2021.681513. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...