Proteomic analysis of cardiac ventricles: baso-apical differences
Jazyk angličtina Země Nizozemsko Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
16-12420Y
Czech Science Foundation
16-02972S
Grantová Agentura České Republiky
13-12412S
Grantová Agentura České Republiky
322216
Grantová Agentura, Univerzita Karlova
SVV 260440
Grantová Agentura, Univerzita Karlova
PubMed
29302836
DOI
10.1007/s11010-017-3266-8
PII: 10.1007/s11010-017-3266-8
Knihovny.cz E-zdroje
- Klíčová slova
- Heart, Myocardial heterogeneity, Proteomics, Two-dimensional electrophoresis, Ventricle, Ventricular myocardium,
- MeSH
- 2D gelová elektroforéza MeSH
- chaperon hsp60 metabolismus MeSH
- chromatografie kapalinová MeSH
- dihydrolipoamiddehydrogenasa metabolismus MeSH
- energetický metabolismus MeSH
- kreatinkinasa, forma MM metabolismus MeSH
- L-laktátdehydrogenasa metabolismus MeSH
- lehké řetězce myosinu metabolismus MeSH
- mitochondriální proteiny metabolismus MeSH
- potkani Wistar MeSH
- proteomika * MeSH
- respirační komplex I metabolismus MeSH
- srdeční komory enzymologie metabolismus MeSH
- svalové proteiny izolace a purifikace metabolismus MeSH
- tandemová hmotnostní spektrometrie MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- chaperon hsp60 MeSH
- dihydrolipoamiddehydrogenasa MeSH
- Hspd1 protein, rat MeSH Prohlížeč
- kreatinkinasa, forma MM MeSH
- L-laktátdehydrogenasa MeSH
- lehké řetězce myosinu MeSH
- mitochondriální proteiny MeSH
- respirační komplex I MeSH
- svalové proteiny MeSH
The heart is characterized by a remarkable degree of heterogeneity. Since different cardiac pathologies affect different cardiac regions, it is important to understand molecular mechanisms by which these parts respond to pathological stimuli. In addition to already described left ventricular (LV)/right ventricular (RV) and transmural differences, possible baso-apical heterogeneity has to be taken into consideration. The aim of our study has been, therefore, to compare proteomes in the apical and basal parts of the rat RV and LV. Two-dimensional electrophoresis was used for the proteomic analysis. The major result of this study has revealed for the first time significant baso-apical differences in concentration of several proteins, both in the LV and RV. As far as the LV is concerned, five proteins had higher concentration in the apical compared to basal part of the ventricle. Three of them are mitochondrial and belong to the "metabolism and energy pathways" (myofibrillar creatine kinase M-type, L-lactate dehydrogenase, dihydrolipoamide dehydrogenase). Myosin light chain 3 is a contractile protein and HSP60 belongs to heat shock proteins. In the RV, higher concentration in the apical part was observed in two mitochondrial proteins (creatine kinase S-type and proton pumping NADH:ubiquinone oxidoreductase). The described changes were more pronounced in the LV, which is subjected to higher workload. However, in both chambers was the concentration of proteins markedly higher in the apical than that in basal part, which corresponds to the higher energetic demand and contractile activity of these segments of both ventricles.
1st Faculty of Medicine Charles University Kateřinská 32 Prague Czech Republic
Department of Physiology Faculty of Science Charles University Viničná 7 Prague Czech Republic
Institute of Physiology of the Czech Academy of Sciences Vídeňská 1083 Prague Czech Republic
Zobrazit více v PubMed
Lab Invest. 1992 Sep;67(3):322-30 PubMed
Dev Dyn. 2011 Jun;240(6):1322-34 PubMed
Folia Morphol (Praha). 1978;26(2):131-43 PubMed
Circ Res. 2006 Feb 17;98(3):309-21 PubMed
Cardiovasc Res. 1978 May;12(5):303-8 PubMed
Exp Biol Med (Maywood). 2005 Sep;230(8):507-19 PubMed
J Proteomics. 2016 Aug 11;145:177-86 PubMed
Circulation. 2008 Mar 18;117(11):1436-48 PubMed
Biochim Biophys Acta. 2006 Feb;1762(2):164-80 PubMed
Biochim Biophys Acta. 2016 Jul;1857(7):902-14 PubMed
Pediatr Res. 1999 Jun;45(6):845-52 PubMed
Mitochondrion. 2013 Nov;13(6):615-29 PubMed
Mini Rev Med Chem. 2016;16(1):19-28 PubMed
Curr Med Chem. 2010;17(10):957-73 PubMed
J Am Soc Echocardiogr. 2006 Feb;19(2):206-10 PubMed
Am J Physiol. 1999 Jan;276(1 Pt 2):H71-80 PubMed
Proteomics. 2012 Aug;12(14):2366-77 PubMed
J Am Coll Cardiol. 2002 Nov 20;40(10):1856-63 PubMed
Physiol Res. 2012;61 Suppl 1:S137-44 PubMed
J Mol Cell Cardiol. 2015 Oct;87:102-12 PubMed
Curr Probl Cardiol. 1991 Oct;16(10):653-720 PubMed
J Am Heart Assoc. 2016 Mar 15;5(3):e002836 PubMed
PLoS One. 2012;7(10):e47719 PubMed
J Cardiovasc Magn Reson. 1999;1(1):7-21 PubMed
Proteomics. 2011 Jun;11(11):2320-8 PubMed
Magn Reson Med. 1993 Jul;30(1):4-10 PubMed
Circ Res. 2004 Aug 6;95(3):261-8 PubMed
Herz. 1979 Apr;4(2):86-90 PubMed
Development. 2005 Jan;132(1):189-201 PubMed
Circ Res. 1989 Feb;64(2):360-9 PubMed
Circ Res. 2003 Dec 12;93(12):1193-201 PubMed
Cell Physiol Biochem. 2013;31(1):66-79 PubMed
Hum Genomics. 2009 Jan;3(2):106-20 PubMed
BMC Struct Biol. 2015 Jan 13;15:1 PubMed
J Endod. 2014 Dec;40(12):1961-6 PubMed
J Biol Chem. 2011 Jul 1;286(26):23476-88 PubMed
Proteomics. 2002 Jan;2(1):3-10 PubMed
Circulation. 1989 Mar;79(3):712-7 PubMed
Physiol Genomics. 2003 Nov 11;15(3):165-76 PubMed
Physiol Res. 2003;52(2):147-57 PubMed
J Am Coll Cardiol. 2003 Apr 16;41(8):1280-2 PubMed
J Proteomics. 2016 Aug 11;145:127-36 PubMed
Eur Heart J. 1997 Aug;18(8):1249-56 PubMed
Eur J Oral Sci. 2012 Aug;120(4):259-68 PubMed
Circ Cardiovasc Imaging. 2010 Jul;3(4):456-63 PubMed
Physiol Genomics. 2011 Nov 7;43(21):1198-206 PubMed
Circulation. 1996 Oct 15;94(8):1894-901 PubMed
Am J Physiol. 1982 Nov;243(5):H761-6 PubMed
Clin Proteomics. 2014 Sep 01;11(1):34 PubMed
Physiol Bohemoslov. 1990;39(2):147-50 PubMed