Slowly dispersing neotenic beetles can speciate on a penny coin and generate space-limited diversity in the tropical mountains
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
27633844
PubMed Central
PMC5025657
DOI
10.1038/srep33579
PII: srep33579
Knihovny.cz E-zdroje
- MeSH
- biologická evoluce * MeSH
- brouci genetika fyziologie MeSH
- druhová specificita MeSH
- ekosystém * MeSH
- fylogeneze MeSH
- jednonukleotidový polymorfismus genetika MeSH
- sekvenční analýza DNA MeSH
- tropické klima * MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
We demonstrate the controversial origin of a biological species within an area of a few kilometres in the absence of physical barriers. We employed nuclear rRNA/mitochondrial and genome-wide SNP approaches to infer relationships of four species of net-winged beetles characterised by female neoteny. Three species are distributed at low elevations and a single population colonised a 40 km(2) highland plateau and established distinct biological species despite incomplete genetic isolation. The speciation process is extreme in the highly localised spatial scale, due to the low dispersal power of neotenics, and provides clear support for a microallopatric model based on ecological conditions. In contrast with neutral evolution in a homogenous environment, as demonstrated by the genetic divergence and morphological similarity of two widely distributed low-mountain species, the environmental characteristics of the high-mountain plateau led to the origin of a species adapted to the local mimetic pattern and characterised by morphologically distinct genitalia. We conclude that the low dispersal propensity promotes neutral genetic differentiation in the first stage, but environmental characteristics play an important role the final phase of the speciation process. The unexpected speciation at such an extreme geographic scale points to the in situ origin and uniqueness of the mountain fauna.
Institute of Conservation Science and Learning Bristol Zoological Gardens Bristol Clifton BS8 3HA UK
Zobrazit více v PubMed
Barley A. J., White J., Diesmos A. C. & Brown R. M. The challenge of species delimitation at the extremes: diversification without morphological change in Philippine sun skinks. Evolution, 67, 3556–3572 (2013). PubMed
Pinzon J. H. & LaJeunesse T. Species delimitation of common reef corals in the genus Pocillopora using nucleotide sequence phylogenies, population genetics and symbiosis ecology. Mol Ecol 20, 311–325 (2011). PubMed
Li Y., Gunter N. L., Pang H. & Bocak L. DNA-based species delimitation separates highly divergent populations within morphologically coherent clades of poorly dispersing beetles. Zool J Linn Soc 175, 59–72 (2015).
Tänzler R. et al.. Macroevolution of hyperdiverse flightless beetles reflects the complex geological history of the Sunda Arc. Sci Rep 6, 18793 (2016). PubMed PMC
Toussaint E. F. A. et al.. The towering orogeny of New Guinea as a trigger for arthropod megadiversity. Nat Comm 5, 4001 (2014). PubMed
Merckx S. F. T. et al.. Evolution of endemism on a young tropical mountain. Nature, 524, 347–350 (2015). PubMed
Coyne J. A. & Orr H. A. Speciation. Sinauer Associates, Sunderland, Massachusetts (2004).
Ikeda H., Nishikawa M. & Sota T. Loss of flight promotes beetle diversification. Nat Comm 3, 648 (2011). PubMed PMC
Baselga A. et al.. Whole-community DNA barcoding reveals a spatio-temporal continuum of biodiversity at species and genetic levels. Nat Comm 4, 1892 (2013). PubMed
DeVries P. J., Murray D. & Lande R. Species diversity in vertical, horizontal, and temporal dimensions of a fruit-feeding butterfly community in an Ecuadorian rainforest. Biol J Linn Soc 62, 343–364 (1997).
Savolainen V. et al.. Sympatric speciation in palms on an oceanic island. Nature, 441, 210–213 (2006). PubMed
Marten A., Braendle M. & Brandl R. Habitat type predicts genetic population differentiation in freshwater invertebrates. Mol Ecol 15, 2643–2651 (2006). PubMed
Park C. C. Tropical rainforests. Routledge, London and New York (2002).
Hall R. Cenozoic geological and plate tectonic evolution of SE Asia and the SW Pacific: computer-based reconstructions, model and animations. J Asian Earth Sci 20, 353–431 (2002).
Cottam M. A., Hall R. & Ghani A. A. Late Cretaceous and Cenozoic tectonics of the Malay Peninsula constrained by thermochronology J Asian Earth Sci 76, 241–257 (2013).
DiNezio P. N. & Tierney J. E. The effect of sea level on glacial Indo-Pacific climate. Nat Geosci 6, 485–491 (2013).
Najman Y., Pringle M., Godlin L. & Oliver G. Dating of the oldest continental sediments from the Himalayan foreland basin. Nature 410, 194–197 (2001). PubMed
Wu G. X. et al.. Thermal Controls on the Asian Summer Monsoon. Sci. Rep. 2, 404 (2012). PubMed PMC
Cannon C. H., Morley R. J. & Bush A. B. G. The current refugial rainforests of Sundaland are unrepresentative of their biogeographic past and highly vulnerable to disturbance. Proc Nat Acad Sci USA, 106, 11188–11193 (2009). PubMed PMC
Morley R. J. Origin and evolution of tropical rain forests. John Wiley and Sons Ltd., Chichester (2000).
Papadopoulou A., Anastasiou I., Keskin B. & Vogler A. P. Comparative phylogeography of tenebrionid beetles in the Aegean archipelago: the effect of dispersal ability and habitat preference. Mol Ecol 18, 2503–2517 (2009). PubMed
Bocak L., Bocakova M., Hunt T. & Vogler A. P. (2008) Multiple ancient origins of neoteny in Lycidae (Coleoptera): consequences for ecology and macroevolution. Proc R Soc B-Biol Sci 275, 2015–2023 (2008). PubMed PMC
Malohlava V. & Bocak L. Evidence of extreme habitat stability in a Southeast Asian biodiversity hotspot based on the evolutionary analysis of neotenic net-winged beetles. Mol Ecol 19, 4800–4811 (2010). PubMed
Masek M., Palata V., Bray T. C. & Bocak L. Molecular phylogeny reveals high diversity, geographic structure and limited ranges in neotenic net-winged beetles Platerodrilus (Coleoptera: Lycidae). PloS One 10, e0123855 (2015). PubMed PMC
Eisner T. et al.. Defensive chemistry of lycid beetles and of mimetic cerambycid beetles that feed on them. Chemoecology 18, 109–119 (2008). PubMed PMC
Bocak L. & Yagi T. Evolution of mimicry patterns in Metriorrhynchus (Coleoptera: Lycidae): the history of dispersal and speciation in Southeast Asia. Evolution 64, 39–52 (2010). PubMed
Chouteau M. & Angers B. The role of predators in maintaining the geographic organization of aposematic signals. Am Nat 178, 810–817 (2011). PubMed
Malohlava V. & Bocak L. A revision of the neotenic net-winged beetle Scarelus (Coleoptera: Lycidae). Ann Soc entomol Fr 47, 176–192 (2011).
Grimbacher P. S. & Catterall C. P. How much do site age, habitat structure and spatial isolation influence the restoration of rainforest beetle species assemblages? Biol Cons 135, 107–118 (2007).
Fujisawa T., Vogler A. P. & Barraclough T. G. Ecology has contrasting effects on genetic variation within species versus rates of molecular evolution across species in water beetles. Proc R Soc B-Biol Sci 282, 20142476 (2015). PubMed PMC
Hausdorf B. & Hennig C. Nestedness of north-west European land snail ranges as a consequence of differential immigration from Pleistocene glacial refuges. Oecologia 35, 102–109 (2003). PubMed
Moore B. P. & Brown W. V. Identification of warning odour components, bitter principles and antifeedants in an aposematic beetle–Metriorrhynchus rhipidium (Coleoptera: Lycidae). Ins Biochem 15, 493–499 (1981).
Martin S. H. et al.. Genome-wide evidence for speciation with gene flow in Heliconius butterflies. Gen Res 23, 1817–1828 (2013). PubMed PMC
Bocakova M., Bocak L., Hunt T., Teravainen M. & Vogler A. P. Molecular phylogenetics of Elateriformia (Coleoptera): evolution of bioluminescence and neoteny. Cladistics 23, 477–496 (2007).
Kundrata R., Bocakova M. & Bocak L. The comprehensive phylogeny of Elateroidea (Coleoptera): molecular evidence for evolution of soft-bodiedness, neoteny and bioluminiscence. Mol Phyl Evol 76, 162–171 (2014). PubMed
Bocak L., Grebennikov V. V. & Sklenarova K. Cautires apterus, a new species and the first record of wingless male Lycidae (Coleoptera) discovered in the North Pare Mountains, Tanzania. Ann Zool 64, 1–7 (2014).
Bocak L., Kundrata R., Andújar Fernández C. & Vogler A. P. The discovery of Iberobaeniidae (Coleoptera: Elateroidea): a new family of beetles from Spain, with immatures detected by environmental DNA sequencing. Proc R Soc B-Biol Sci 283, 20152350 (2016). PubMed PMC
Liebherr J. K. Gene flow in ground beetles (Coleoptera: Carabidae) of differing habitat preference and hight-wing development. Evolution 42, 129–137 (1988). PubMed
Su Y. C., Wang J. F., Villanueva R. J. T., Nuneza O. M. & Lin C. P. Hopping out of Mindanao: Miocene-Pliocene geological processes and cross-island dispersal as major drivers of diversity for Philippine treehoppers. J Biogeogr 41, 1277–1290 (2014).
Balke M. et al.. New Guinea highland origin of a widespread arthropod supertramp. Proc R Soc B-Biol Sci 276, 2359–2367 (2009). PubMed PMC
Twyford A. D. & Ennos R. A. Next-generation hybridization and introgression. Heredity 108, 179–189 (2012). PubMed PMC
Willing E.-M., Dreyer C. & van Oosterhout C. Estimates of genetic differentiation measured by FST do not necessarily require large sample sizes when using many SNP markers. PLoS One 7, e42649 (2012). PubMed PMC
Eaton D. A. R. & Ree R. H. Inferring Pphylogeny and introgression using RADseq data: an example from flowering plants (Pedicularis: Orobanchaceae). Syst Biol 62, 689–706 (2013). PubMed PMC
Excoffier L., Dupanloup I., Huerta-Sanchez E., Sousa V. C. & Foll M. Robust demographic inference from genomic and SNP data. PLoS Genet 9, e1003905 (2013). PubMed PMC
Eaton D. A. R. PyRAD: assembly of de novo RADseq loci for phylogenetic analyses. Bioinformatics 30, 1844–1849 (2014). PubMed
Chattopadhyay B., Garg K. M. & Ramakrishnan U. Effect of diversity and missing data on genetic assignment with RAD-Seq markers. BMC Res Notes 7, 841 (2014). PubMed PMC
Ilut D. C., Nydam M. L. & Hare M. P. Defining loci in restriction-based reduced representation genomic data from nonmodel species: sources of bias and diagnostics for optimal clustering. Bio Med Res Int 675158 (2014). PubMed PMC
Harvey M. G. et al.. Similarity thresholds used in short read assembly reduce the comparability of population histories across species PeerJ 3, e895 (2015). PubMed PMC
R Core Team R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/ (2016).
Lischer H. E. L. & Excoffier L. PGDSpider: an automated data conversion tool for connecting population genetics and genomics programs. Bioinformatics 28, 298–299 (2012). PubMed
Foll M. & Gaggiotti O. E. A genome scan method to identify selected loci appropriate for both dominant and codominant markers: A Bayesian perspective. Genetics 180, 977–993 (2008). PubMed PMC
Antao T., Lopes A., Lopes R. J., Beja-Pereira A. & Luikart G. LOSITAN: a workbench to detect molecular adaptation based on a Fst-outlier method. BMC Bioinform. 9, 323 (2008). PubMed PMC
Pritchard J. K., Stephens M. & Donnelly P. Inference of population structure using multilocus genotype data. Genetics 155, 945–959 (2000). PubMed PMC
Price A. L. et al.. Principal components analysis corrects for stratification in genome- wide association studies. Nat Genet 38, 904–909 (2006). PubMed
Benazzo A., Panziera A. & Bertorelle G. 4P: fast computing of population genetics statistics from large DNA polymorphism panels. Ecol Evol 5, 172–175 (2015). PubMed PMC
Katoh K. & Standley D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30, 772–780 (2013). PubMed PMC
Stamatakis A. RAxML Version 8: A tool for phylogenetic analysis and post- analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014). PubMed PMC
Miller M. A., Pfeiffer W. & Schwartz T. “Creating the CIPRES Science Gateway for inference of large phylogenetic trees” in Proceedings of the Gateway Computing Environments Workshop, 14 Nov. 2010, New Orleans, LA, pp 1–8 (2010).
Darriba D., Taboada G. L., Doallo R. & Posada D. jModelTest 2: more models, new heuristics and parallel computing. Nat Meth 9, 772 (2012). PubMed PMC
Stamatakis A., Hoover P. & Rougemont J. A rapid bootstrap algorithm for the RAxML web servers. Syst Biol 57, 758–771 (2008). PubMed
Drummond A. J. & Bouckaert R. R. Bayesian Evolutionary Analysis with Beast. Cambridge University Press, Cambridge (2015).
Drummond A. J., Suchard M. A., Xie D. & Rambaut A. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol Biol Evol 29, 1969–1973 (2012). PubMed PMC
Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17, 368–376 (1981). PubMed
Rambaut A., Suchard M. A., Xie D. & Drummond A. J. Tracer 1.6, Available from http://beast.bio.ed.ac.uk/Tracer (2014).