Genomic and Mitochondrial Data Identify Different Species Boundaries in Aposematically Polymorphic Eniclases Net-Winged Beetles (Coleoptera: Lycidae)

. 2019 Sep 11 ; 10 (9) : . [epub] 20190911

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31514482

Grantová podpora
18-14942S Grantová Agentura České Republiky
Prf-2019 IGA PrF UP Olomouc

Species delineation is essential for any evolutionary and biodiversity research, and recent advances in genomic sequencing have made it possible to robustly define species boundaries and detect hidden diversity. Here, we studied 14 species of aposematically colored New Guinean Eniclases (Coleoptera: Lycidae) whose conventional morphology- and single-locus mtDNA-based taxonomy has been contentious. We analyzed mitochondrial and restriction site associated DNA fragments to obtain a phylogenetic hypothesis and compared relationships recovered by the RAD analysis with species limits based on other information. The results show the presence of cryptic diversity and common mitonuclear discordance when over 30% of individuals were incorrectly assigned to species if only mitogenomic markers were considered. Nuclear data falsified the species rank of one species and identified one earlier unrecognized lineage deserving species rank. Further, our analyses demonstrate a highly variable phenotypic differentiation, with several pairs of cryptic species standing in contrast with genetically close but phenotypically highly divergent lineages. We show that morphological and mitogenomic analyses produce reliable information for taxonomy in most cases. Nevertheless, the species boundaries among closely related species should be based on all lines of evidence, including nuclear markers.

Zobrazit více v PubMed

DeSalle R., Egan M.G., Siddall M. The unholy trinity: Taxonomy, species delimitation and DNA barcoding. Phil. Trans. R. Soc. Biol. Sci. 2005;360:1905–1916. doi: 10.1098/rstb.2005.1722. PubMed DOI PMC

Larson W.A., Seeb L.W., Everett M.V., Waples R.K., Templin W.D., Seeb J.E. Genotyping by sequencing resolves shallow population structure to inform conservation of Chinook salmon (Oncorhynchus tshawytscha) Evol. Appl. 2014;7:355–369. doi: 10.1111/eva.12128. PubMed DOI PMC

Nater A., Mattle-Greminger M.P., Nurcahyo A., Nowak M.G., de Manuel M., Desai T., Groves C., Pybus M., Sonay T.B., Roos C., et al. Morphometric, behavioral, and genomic evidence for a new orangutan species. Curr. Biol. 2017;27:3487–3498. doi: 10.1016/j.cub.2017.09.047. PubMed DOI

Abdelkrim J., Aznar-Cormano L., Buge B., Fedosov A., Kantor Y., Zaharias P., Puillandre N. Delimiting species of marine gastropods (Turridae, Conoidea) using RAD sequencing in an integrative taxonomy framework. Mol. Ecol. 2018;27:4591–4611. doi: 10.1111/mec.14882. PubMed DOI

Riedel A., Sagata K., Surbakti S., Tanzler R., Balke M. One hundred and one new species of Trigonopterus weevils from New Guinea. ZooKeys. 2013;280:1–150. doi: 10.3897/zookeys.280.3906. PubMed DOI PMC

Ahrens D., Monaghan M.T., Vogler A.P. DNA-based taxonomy for associating adults and larvae in multi-species assemblages of chafers (Coleoptera: Scarabaeidae) Mol. Phyl. Evol. 2007;44:436–449. doi: 10.1016/j.ympev.2007.02.024. PubMed DOI

Ahrens D., Fujisawa T., Krammer H.-J., Eberle J., Fabrizi S., Vogler A.P. Rarity and incomplete sampling in DNA-based species delimitation. Syst. Biol. 2016;65:478–494. doi: 10.1093/sysbio/syw002. PubMed DOI

Riedel A., Tanzler R., Pons J., Suhardjono Y.R., Balke M. Large-scale molecular phylogeny of Cryptorhynchinae (Coleoptera, Curculionidae) from multiple genes suggests American origin and later Australian radiation. Syst. Entomol. 2016;41:492–503. doi: 10.1111/syen.12170. DOI

Li Y., Gunter N., Hong P., Bocak L. DNA-based species delimitation separates highly divergent populations within morphologically coherent clades of poorly dispersing beetles. Zool. J. Linn. Soc. 2015;175:59–72. doi: 10.1111/zoj.12262. DOI

Morinière J., Cancian de Araujo B., Lam A.W., Hausmann A., Balke M., Schmidt S., Hendrich L., Doczkal D., Fartmann B., Arvidsson S., et al. Species identification in malaise trap samples by DNA barcoding based on NGS technologies and a scoring matrix. PLoS ONE. 2016;11:e0155497. doi: 10.1371/journal.pone.0155497. PubMed DOI PMC

Cruaud A., Gautier M., Galan M., Foucaud J., Saune L., Genson G., Dubois E., Nidelet S., Deuve T., Rasplus J.-Y. Empirical assessment of RAD sequencing for interspecific phylogeny. Mol. Biol. Evol. 2014;31:1272–1274. doi: 10.1093/molbev/msu063. PubMed DOI

Bray T.C., Bocak L. Slowly dispersing neotenic beetles can speciate on a penny coin and generate space-limited diversity in the tropical mountains. Sci. Rep. 2016;6:33579. doi: 10.1038/srep33579. PubMed DOI PMC

Kobayashi T., Sota T. Divergent host use among cryptic species in the fungivorous ciid beetle Octotemnus laminifrons (Motschulsky, 1860), with descriptions of three new species from Japan. Syst. Entomol. 2019;44:179–191. doi: 10.1111/syen.12321. DOI

Herrera S., Shank T.M. RAD sequencing enables unprecedented phylogenetic resolution and objective species delimitation in recalcitrant divergent taxa. Mol. Phyl. Evol. 2016;100:70–79. doi: 10.1016/j.ympev.2016.03.010. PubMed DOI

Sklenarova K., Kubecek V., Bocak L. Subtribal classification of Metriorrhynchini (Insecta: Coleoptera: Lycidae): An integrative approach using molecular phylogeny and morphology of adults and larvae. Arthr. Syst. Phyl. 2014;72:37–54.

Bocak L., Bocakova M. Revision of the genus Eniclases Waterhouse, 1879 (Coleoptera, Lycidae, Metriorrhynchinae) Mitt. Münch. Entomol. Ges. 1991;81:203–226.

Waterhouse C.O. Part I.—Lycidae. British Museum; London, UK: 1879. Illustration of the Typical Specimens of Coleoptera in the Collection of the British Museum.

Pic M. Contribution à l’étude des Lycides. L’Echange. 1921;406:9–12.

Kleine R. Coleoptera—Lycidae. Nova Guin. 1926;15:91–195.

Bocek M., Bocak L. Species limits in polymorphic mimetic Eniclases net-winged beetles from New Guinean mountains (Coleoptera: Lycidae) Zookeys. 2016;593:15–35. PubMed PMC

Bocek M., Adamkova K. New species of trichaline net-winged beetles, with remarks on the phylogenetic position and distribution of Schizotrichalus (Coleoptera: Lycidae: Metriorrhynchinae) Zootaxa. 2019;4623:341–350. doi: 10.11646/zootaxa.4623.2.8. PubMed DOI

Bocek M., Kusy D., Motyka M., Bocak L. Persistence of multiple patterns and intraspecific polymorphism in multi-species Müllerian communities of net-winged beetles. Front. Zool. (accepted) PubMed PMC

Sklenarova K., Chesters D., Bocak L. Phylogeography of poorly dispersing net-winged beetles: A role of drifting India in the origin of Afrotropical and Oriental fauna. PLoS ONE. 2013;8:e67957. doi: 10.1371/journal.pone.0067957. PubMed DOI PMC

Katoh K., Standley D.M. MAFFT Multiple Sequence Alignment Software Version 7: Improvements in performance and usability. Mol. Biol. Evol. 2013;30:772–780. doi: 10.1093/molbev/mst010. PubMed DOI PMC

Katoh K., Toh H. Improved accuracy of multiple ncRNA alignment by incorporating structural information into a MAFFT-based framework. BMC Bioinform. 2008;9:212. doi: 10.1186/1471-2105-9-212. PubMed DOI PMC

Nguyen L.T., Schmidt H.A., Von Haeseler A., Minh B.Q. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 2015;32:268–274. doi: 10.1093/molbev/msu300. PubMed DOI PMC

Kalyaanamoorthy S., Minh B.Q., Wong T.K.F., Von Haeseler A., Jermiin L.S. ModelFinder: Fast model selection for accurate phylogenetic estimates. Nat. Meth. 2017;14:587–589. doi: 10.1038/nmeth.4285. PubMed DOI PMC

Ekblom R., Galindo J. Applications of next generation sequencing in molecular ecology of non-model organisms. Heredity. 2011;107:1–15. doi: 10.1038/hdy.2010.152. PubMed DOI PMC

Eaton D.A.R. PyRAD: assembly of de novo RADseq loci for phylogenetic analyses. Bioinformatics. 2014;30:1844–1849. doi: 10.1093/bioinformatics/btu121. PubMed DOI

Eaton D.A.R., Overcast I. iPYRAD: Interactive Assembly and Analysis of RADseq Data Sets. [(accessed on 20 April 2019)];2016 Available online: https://ipyrad.readthedocs.io/ PubMed

Linsley E.G., Eisner T., Klots A.B. Mimetic assemblages of sibling species of lycid beetles. Evolution. 1961;15:15–29. doi: 10.1111/j.1558-5646.1961.tb03126.x. DOI

Eisner T., Kafatos F.C., Linsley E.G. Lycid predation by mimetic adult Cerambycidae (Coleoptera) Evolution. 1962;16:316–324. doi: 10.1111/j.1558-5646.1962.tb03223.x. DOI

Moore B.P., Brown W.V. Identification of warning odour components, bitter principles and antifeedants in an aposematic beetle: Metriorrhynchus rhipidius (Coleoptera: Lycidae) Ins. Biochem. 1981;11:493–499. doi: 10.1016/0020-1790(81)90016-0. DOI

Eisner T., Schroeder F.C., Snyder N., Grant J.B., Aneshansley D.J., Utterback D., Meinwald J., Eisner M. Defensive chemistry of lycid beetles and of mimetic cerambycid beetles that feed on them. Chemoecology. 2008;18:109–119. doi: 10.1007/s00049-007-0398-4. PubMed DOI PMC

Bocak L., Yagi T. Evolution of mimicry patterns in Metriorrhynchus (Coleoptera, Lycidae): E history of dispersal and speciation in Southeast Asia. Evolution. 2010;64:39–52. doi: 10.1111/j.1558-5646.2009.00812.x. PubMed DOI

Motyka M., Kampova L., Bocak L. Phylogeny and evolution of Müllerian mimicry in aposematic Dilophotes: Evidence for advergence and size-constraints in evolution of mimetic sexual dimorphism. Sci. Rep. 2018;8:3744. doi: 10.1038/s41598-018-22155-6. PubMed DOI PMC

Mallet J. A species definition for the modern synthesis. Trends Ecol. Evol. 1995;10:294–299. doi: 10.1016/0169-5347(95)90031-4. PubMed DOI

Dupuis J.R., Roe A.D., Sperling F.A.H. Multi-locus species delimitation in closely related animals and fungi: one marker is not enough. Mol. Ecol. 2012;21:4422–4436. doi: 10.1111/j.1365-294X.2012.05642.x. PubMed DOI

Leache A., J Oaks J.R. The Utility of Single Nucleotide Polymorphism (SNP) Data in Phylogenetics. Ann. Rev. Ecol. Evol. Syst. 2017;48:69–84. doi: 10.1146/annurev-ecolsys-110316-022645. DOI

Ivanov V., Lee K.M., Mutanen M. Mitonuclear discordance in wolf spiders: Genomic evidence for species integrity and introgression. Mol. Ecol. 2018;27:1681–1695. doi: 10.1111/mec.14564. PubMed DOI

Tocco C., Dacke M., Byrne M. Eye and wing structure closely reflects the visual ecology of dung beetles. J. Comp. Physiol. A Neuroethol. Sens. Neur. Behav. Physiol. 2019;205:211–221. doi: 10.1007/s00359-019-01324-6. PubMed DOI

Mayr E. Systematics and the Origin of Species, from the Viewpoint of a Zoologist. Harvard University Press; Cambridge, MA, USA: 1942.

Cracraft J. Species concepts and speciation analysis. Curr. Ornith. 1983;1:159–187.

Coyne J.A., Orr H.A. Speciation. Sinauer Associates; Sunderland, MA, USA: 2004.

Mallet J. Hybridization, ecological races and the nature of species: Empirical evidence for the ease of speciation. Phil. Trans. R. Soc. Biol. Sci. 2008;363:2971–2986. doi: 10.1098/rstb.2008.0081. PubMed DOI PMC

Coates D.J., Byrne M., Moritz C. Genetic diversity and conservation units: dealing with the species-population continuum in the age of genomics. Front. Ecol. Evol. 2018;6:165. doi: 10.3389/fevo.2018.00165. DOI

Rosser N., Freitas A.V.L., Huertas B., Joron M., Lamas G., Mérot C., Simpson F., Willmott K.R., Mallet J., Dasmahapatra K.K. Cryptic speciation associated with geographic and ecological divergence in two Amazonian Heliconius butterflies. Zool. J. Linn. Soc. 2019;186:233–249. doi: 10.1093/zoolinnean/zly046. DOI

Linck E., Epperly K., Van Els P., Spellman G.M., Bryson R.W., Jr., McCormack J.E., Canales-Del-Castillo R., Klicka J. Dense geographic and genomic sampling reveals paraphyly and a cryptic lineage in a classic sibling species complex. Syst. Biol. 2019 doi: 10.1093/sysbio/syz027. PubMed DOI

Elias M., Hill R.I., Willmott K.R., Dasmahapatra K.K., Brower A.V.Z., Mallet J., Jiggins C.D. Limited performance of DNA barcoding in a diverse community of tropical butterflies. Proc. R. Soc. Biol. Sci. 2007;274:2881–2889. doi: 10.1098/rspb.2007.1035. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...