• This record comes from PubMed

Click Beetle Mitogenomics with the Definition of a New Subfamily Hapatesinae from Australasia (Coleoptera: Elateridae)

. 2020 Dec 29 ; 12 (1) : . [epub] 20201229

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
14942S Grantova agentura Ceske Republiky
PrF-2020 IGA UP Olomouc

Elateridae is a taxon with very unstable classification and a number of conflicting phylogenetic hypotheses have been based on morphology and molecular data. We assembled eight complete mitogenomes for seven elaterid subfamilies and merged these taxa with an additional 22 elaterids and an outgroup. The structure of the newly produced mitogenomes showed a very similar arrangement with regard to all earlier published mitogenomes for the Elateridae. The maximum likelihood and Bayesian analyses indicated that Hapatesus Candèze, 1863, is a sister of Parablacinae and Pityobiinae. Therefore, Hapatesinae, a new subfamily, is proposed for the Australian genera Hapatesus (21 spp.) and Toorongus Neboiss, 1957 (4 spp.). Parablacinae, Pityobiinae, and Hapatesinae have a putative Gondwanan origin as the constituent genera are known from the Australian region (9 genera) and Neotropical region (Tibionema Solier, 1851), and only Pityobius LeConte, 1853, occurs in the Nearctic region. Another putative Gondwanan lineage, the Afrotropical Morostomatinae, forms either a serial paraphylum with the clade of Parablacinae, Pityobiinae, and Hapatesinae or is rooted in a more terminal position, but always as an independent lineage. An Eudicronychinae lineage was either recovered as a sister to Melanotini or as a deep split inside Elaterinae and we herein transfer the group to Elaterinae as Eudicronychini, a new status. The mitochondrial genomes provide a sufficient signal for the placement of most lineages, but the deep bipartitions need to be compared with phylogenomic analyses.

See more in PubMed

Costa C., Lawrence J.F., Rosa S.P. Elateridae Leach, 1815. In: Leschen R.A.B., Beutel R.G., Lawrence J.F., editors. Handbook of Zoology, Vol. 2, Coleoptera, Beetles. Walter de Gruyter GmbH & Co.; Berlin, Germany: New York, NY, USA: 2010. pp. 75–103.

Bocakova M., Bocak L., Hunt T., Teräväinen M., Vogler A.P. Molecular phylogenetics of Elateriformia (Coleoptera): Evolution of bioluminescence and neoteny. Cladistics. 2007;23:477–496. doi: 10.1111/j.1096-0031.2007.00164.x. DOI

Ribak G., Weihs D. Jumping without Using Legs: The jump of the click-beetles (Elateridae) is morphologically constrained. PLoS ONE. 2011;6:e20871. doi: 10.1371/journal.pone.0020871. PubMed DOI PMC

Bolmin O., Wei L.H., Hazel A.M., Dunn A.C., Wissa A., Alleyne M. Latching of the click beetle (Coleoptera: Elateridae) thoracic hinge enabled by the morphology and mechanics of conformal structures. J. Exp. Biol. 2019;222:jeb196683. doi: 10.1242/jeb.196683. PubMed DOI

Whalley P.E.S. The systematics and palaeogeography of the lower Jurassic insects of Dorset, England. Bull. Brit. Mus. Nat. Hist. 1985;39:107–189.

Doludenko M.P., Ponomarenko A.G., Sakulina G.V. La Géologie du Gisement Unique de la Faune et de la Flore du Jurassique Supérieur d’Aulié (Karatau, Kazakhstan du Sud) Académie des Sciences de l’URSS, Institut Géologique; Moscow, Russia: 1990.

Chang H.L., Kirejtshuk A.G., Ren D., Shih C.K. First fossil click beetles from the Middle Jurassic of Inner Mongolia, China (Coleoptera: Elateridae) Ann. Zool. 2009;59:7–14. doi: 10.3161/000345409X432547. DOI

Sohn J.C., Nam G.S., Choi S.W., Ren D. New fossils of Elateridae (Insecta, Coleoptera) from Early Cretaceous Jinju Formation (South Korea) with their implications to evolutionary diversity of extinct Protagrypninae. PLoS ONE. 2019;14:e0225502. doi: 10.1371/journal.pone.0225502. PubMed DOI PMC

Bouchard P., Bousquet Y., Davies A.E., Alonso-Zarazaga M.A., Lawrence J.F., Lyal C.H.C., Newton A.F., Reid C.A.M., Schmitt M., Ślipiński S.A., et al. Family-group names in Coleoptera (Insecta) Zookeys. 2011;88:1–972. doi: 10.3897/zookeys.88.807. PubMed DOI PMC

Douglas H. Phylogenetic relationships of Elateridae inferred from adult morphology, with special reference to the position of Cardiophorinae. Zootaxa. 2011;2900:1–45. doi: 10.11646/zootaxa.2900.1.1. DOI

Lawrence J.F., Ślipiński S.A., Seago A.E., Thayer M.K., Newton A.F., Marvaldi A.E. Phylogeny of the Coleoptera based on morphological characters of adults and larvae. Ann. Zool. 2011;61:1–217. doi: 10.3161/000345411X576725. DOI

Crowson R.A. A review of the classification of Cantharoidea (Coleoptera), with definition of two new families Cneoglossidae and Omethidae. Rev. Univ. Madrid. 1972;21:35–77.

Kundrata R., Bocak L. The phylogeny and limits of Elateridae (Insecta, Coleoptera): Is there a common tendency of click beetles to soft-bodiedness and neoteny? Zool. Scr. 2011;40:364–378. doi: 10.1111/j.1463-6409.2011.00476.x. DOI

Kundrata R., Bocakova M., Bocak L. The comprehensive phylogeny of the superfamily Elateroidea (Coleoptera: Elateriformia) Mol. Phylogenet. Evol. 2014;76:162–171. doi: 10.1016/j.ympev.2014.03.012. PubMed DOI

Bocak L., Motyka M., Bocek M., Bocakova M. Incomplete sclerotization and phylogeny: The phylogenetic classification of Plastocerus (Coleoptera: Elateroidea) PLoS ONE. 2018;13:e0194026. doi: 10.1371/journal.pone.0194026. PubMed DOI PMC

Sagegami-Oba R., Oba Y., Ôhira H. Phylogenetic relationships of click-beetles (Coleoptera: Elateridae) inferred from 28S ribosomal DNA: Insights into the evolution of bioluminescence in Elateridae. Mol. Phylogenet. Evol. 2007;42:410–421. doi: 10.1016/j.ympev.2006.07.017. PubMed DOI

Kovalev A.V., Kirejtshuk A.G., Shapovalov A.M. Drilorhinus, a new genus of the family Drilidae Lacordaire, 1857 (Coleoptera: Elateroidea) from Iran. Zootaxa. 2019;4577:187–194. doi: 10.11646/zootaxa.4577.1.12. PubMed DOI

Muona J., Taräväinen M. A re-evaluation of the Eucnemidae larval characters. Papeis Avul. Zool. Spec. Issue. 2020;60 doi: 10.11606/1807-0205/2020.60.special-issue.28. DOI

Bocak L., Kusy D., Motyka M., Bocek M. Drilidae Blanchard, 1845: Multi-gene molecular phylogenies versus morphological similarity. An answer to Kovalev et al. Zootaxa. 2019;4674:142–146. doi: 10.11646/zootaxa.4674.1.8. PubMed DOI

Kundrata R., Gunter N.L., Douglas H., Bocak L. Next step toward a molecular phylogeny of click-beetles (Coleoptera: Elateridae): Redefinition of Pityobiinae, with a description of a new subfamily, Parablacinae, from the Australasian Region. Austral Entomol. 2016;55:291–302. doi: 10.1111/aen.12185. DOI

McKenna D.D., Wild A.L., Kanda K., Bellamy C.L., Beutel R.G., Caterino M.S., Farnum C.W., Hawks D.C., Ivie M.A., Jameson M.L., et al. The beetle tree of life reveals that Coleoptera survived end-Permian mass extinction to diversify during the Cretaceous terrestrial revolution. Syst. Entomol. 2015;40:835–880. doi: 10.1111/syen.12132. DOI

Zhang S.Q., Che L.H., Li Y., Dan L., Pang H., Ślipiński A., Zhang P. Evolutionary history of Coleoptera revealed by extensive sampling of genes and species. Nat. Commun. 2018;9:205. doi: 10.1038/s41467-017-02644-4. PubMed DOI PMC

Kusy D., Motyka M., Andújar C., Bocek M., Masek M., Sklenarova K., Kokas F., Bocakova M., Vogler A.P., Bocak L. Genome sequencing of Rhinorhipus Lawrence exposes an early branch of the Coleoptera. Front. Zool. 2018;15:21. doi: 10.1186/s12983-018-0262-0. PubMed DOI PMC

McKenna D.D., Shin S., Ahrens D., Balke M., Beza-Beza C., Clarke D.J., Donath A., Escalona H.E., Friedrich F., Letsch H., et al. The evolution and genomic basis of beetle diversity. Proc. Natl Acad. Sci. USA. 2019;116:24729–24737. doi: 10.1073/pnas.1909655116. PubMed DOI PMC

Kusy D., Motyka M., Bocek M., Vogler A.P., Bocak L. Genome sequences identify three families of Coleoptera as morphologically derived click beetles (Elateridae) Sci. Rep. 2018;8:17084. doi: 10.1038/s41598-018-35328-0. PubMed DOI PMC

Kusy D., He J.W., Bybee S.M., Motyka M., Bi W.X., Podsiadlowski L., Li X.Y., Bocak L. Phylogenomic relationships of bioluminescent elateroids define the ‘lampyroid’ clade with clicking Sinopyrophoridae as its earliest member. Syst. Entomol. 2021 doi: 10.1111/syen.12451. DOI

Davis A.L.V., Scholtz C.H., Philips T.K. Historical biogeography of scarabaeine dung beetles. J. Biogeogr. 2002;29:1217–1256. doi: 10.1046/j.1365-2699.2002.00776.x. DOI

Chen S., Zhou Y., Chen Y., Gu J. Fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics. 2018;34:i884–i890. doi: 10.1093/bioinformatics/bty560. PubMed DOI PMC

Dierckxsens N., Mardulyn P., Smits G. NOVOPlasty: De novo assembly of organelle genomes from whole genome data. Nucl. Acids Res. 2017;45:e18. doi: 10.1093/nar/gkw955. PubMed DOI PMC

Bernt M., Donath A., Jühling F., Externbrink F., Florentz C., Fritzsch G., Pütz J., Middendorf M., Stadler P.F. MITOS: Improved de novo metazoan mitochondrial genome annotation. Mol. Phylogenet. Evol. 2013;69:313–319. doi: 10.1016/j.ympev.2012.08.023. PubMed DOI

Laslett D., Canbäck B. ARWEN, a program to detect tRNA genes in metazoan mitochondrial nucleotide sequences. Bioinformatics. 2008;24:172–175. doi: 10.1093/bioinformatics/btm573. PubMed DOI

Greiner S., Lehwark P., Bock R. OrganellarGenomeDRAW (OGDRAW) version 1.3.1: Expanded toolkit for the graphical visualization of organellar genomes. Nucl. Acids Res. 2019;47:W59–W64. doi: 10.1093/nar/gkz238. PubMed DOI PMC

Timmermans M.J.T.N., Dodsworth S., Culverwell C.L., Bocak L., Ahrens D., Littlewood D.T.J., Pons J., Vogler A.P. Why barcode? High-throughput multiplex sequencing of mitochondrial genomes for molecular systematics. Nucl. Acids Res. 2010;38:e197. doi: 10.1093/nar/gkq807. PubMed DOI PMC

Timmermans M.J.T.N., Barton C., Haran J., Ahrens D., Ollikainen A., Culverwell L.C., Dodsworth S., Foster P.G., Bocak L., Vogler A.P. Family-level sampling of mitochondrial genomes in Coleoptera: Compositional heterogeneity and phylogenetics. Genome Biol. Evol. 2016;8:161–175. doi: 10.1093/gbe/evv241. PubMed DOI PMC

Linard B., Crampton-Platt A., Moriniere J., Timmermans M.J.T.N., Andujar C., Arribas P., Miller K.E., Lipecki J., Favreau E., Hunter A., et al. The contribution of mitochondrial metagenomics to large-scale data mining and phylogenetic analysis of Coleoptera. Mol. Phylogenet. Evol. 2018;128:1–11. doi: 10.1016/j.ympev.2018.07.008. PubMed DOI

He J.W., Bi W., Dong Z., Liu G., Zhao R., Wang W., He X.L. The mitochondrial genome of the first luminous click-beetle (Coleoptera: Elateridae) recorded in Asia. Mitochondr. DNA Part B. 2019;4:565–567. doi: 10.1080/23802359.2018.1555019. DOI

Amaral D.T., Mitani Y., Ohmiya Y., Viviani V.R. Organization and comparative analysis of the mitochondrial genomes of bioluminescent Elateroidea (Coleoptera: Polyphaga) Gene. 2016;586:254–262. doi: 10.1016/j.gene.2016.04.009. PubMed DOI

Bininda-Emonds O. TransAlign: Using amino acids to facilitate the multiple alignment of protein-coding DNA sequences. BMC Bioinform. 2005;6:156. doi: 10.1186/1471-2105-6-156. PubMed DOI PMC

Katoh K., Standley D.M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 2013;30:772–780. doi: 10.1093/molbev/mst010. PubMed DOI PMC

Kück P., Longo G.C. FASconCAT-G: Extensive functions for multiple sequence alignment preparations concerning phylogenetic studies. Front. Zool. 2014;11:81. doi: 10.1186/s12983-014-0081-x. PubMed DOI PMC

Kück P., Meid S.A., Gross C., Wägele J.W., Misof B. AliGROOVE—Visualization of heterogeneous sequence divergence within multiple sequence alignments and detection of inflated branch support. BMC Bioinform. 2014;15:294. doi: 10.1186/1471-2105-15-294. PubMed DOI PMC

Jermiin L.S., Jayaswal V., Ababneh F., Robinson J. Phylogenetic model evaluation. In: Keith J., editor. Bioinformatics, Data, Sequence Analysis and Evolution. Volume 1. Humana Press; Totowa, NJ, USA: 2008. pp. 331–363. PubMed

Minh B.Q., Schmidt H.A., Chernomor O., Schrempf D., Woodhams M.D., von Haeseler A., Lanfear R. IQ-TREE 2: New models and efficient methods for phylogenetic inference in the genomic era. Mol. Biol. Evol. 2020;37:1530–1534. doi: 10.1093/molbev/msaa015. PubMed DOI PMC

Lartillot N., Rodrigue N., Stubbs D., Richer J. PhyloBayes MPI: Phylogenetic reconstruction with infinite mixtures of profiles in a parallel environment. Syst. Biol. 2013;62:611–615. doi: 10.1093/sysbio/syt022. PubMed DOI

Chernomor O., von Haeseler A., Minh B.Q. Terrace aware data structure for phylogenomic inference from supermatrices. Syst. Biol. 2016;65:997–1008. doi: 10.1093/sysbio/syw037. PubMed DOI PMC

Kalyaanamoorthy S., Minh B.Q., Wong T.K.F., von Haeseler A., Jermiin L.S. ModelFinder: Fast model selection for accurate phylogenetic estimates. Nat. Meth. 2017;14:587–589. doi: 10.1038/nmeth.4285. PubMed DOI PMC

Hoang D.T., Chernomor O., von Haeseler A., Minh B.Q., Vinh L.S. UFBoot2: Improving the ultrafast bootstrap approximation. Mol. Biol. Evol. 2018;35:518–522. doi: 10.1093/molbev/msx281. PubMed DOI PMC

Shimodaira H. An Approximately unbiased test of phylogenetic tree selection. Syst. Biol. 2002;51:492–508. doi: 10.1080/10635150290069913. PubMed DOI

Shimodaira H., Hasegawa M. Multiple Comparisons of log-likelihoods with applications to phylogenetic inference. Mol. Biol. Evol. 1999;16:1114. doi: 10.1093/oxfordjournals.molbev.a026201. DOI

Kishino H., Hasegawa M. Evaluation of the maximum likelihood estimate of the evolutionary tree topologies from DNA sequence data, and the branching order in hominoidea. J. Mol. Evol. 1989;29:170–179. doi: 10.1007/BF02100115. PubMed DOI

Strimmer K., Rambaut A. Inferring confidence sets of possibly misspecified gene trees. Proc. Biol. Sci. 2002;269:137–142. doi: 10.1098/rspb.2001.1862. PubMed DOI PMC

Kishino H., Miyata T., Hasegawa M. Maximum likelihood inference of protein phylogeny and the origin of chloroplasts. J. Mol. Evol. 1990;31:151–160. doi: 10.1007/BF02109483. DOI

Calder A.A. Coleoptera: Elateroidea. In: Wells A., editor. Zoological Catalogue of Australia. Volume 29.6. CSIRO Publishing; Melbourne, Australia: 1998. p. 248.

Neboiss A. The genera Hapatesus Candèze and Toorongus, gen. nov. (Coleoptera: Elateridae) Austr. J. Zool. 1957;5:496–520. doi: 10.1071/ZO9570496. DOI

Tarnawski D. A world catalogue of Ctenicerini Fleutiaux, 1936. Part II (Coleoptera: Elateridae: Athoinae) Genus. 2001;12:277–323.

Neboiss A. Genus Hapatesus from Austro-Malayan sub-region (Coleoptera: Elateridae) Proc. R. Soc. Vict. 1958;70:169–174.

Girard C. Les Coléoptères Elateridae de Lamto (Côte d’Ivoire) Bull. l’Inst. Fond. Afr. Noire. 1971;23:449–650.

Girard C. Sept nouvelles espèces afrotropicales de Dicronychidae du genre Eudicronychus Méquignon (Coleoptera) Bull. Soc. Entomol. Fr. 1991;96:145–154.

Girard C. Sept nouvelles espèces afrotropicales du genre Eudicronychus Méquignon, 1931 (Coleoptera, Eudicronychidae) Bull. Soc. Entomol. Fr. 2011;116:135–146.

Girard C. Deux espeèces nouvelles du genre Anisomerus Schwarz, 1897 (Coleoptera, Eudicronychidae) Bull. Soc. Entomol. Fr. 2017;122:475–478. doi: 10.32475/bsef_1865. DOI

Schwarz O.C.E. Über die Systematische der Elateriden-Gattungen Dicronychus Castelnau, und Tarsalgus Candèze. Dtsch. Entomol. Zeit. 1897;1897:9–16.

Dolin V.G. Zhilkovanie kry’lev zhukov-shchelkunov (Coleoptera, Elateridae) i ego znachenie dlya sistematiki semeistva. Zool. Zhurnal. 1975;54:1618–1633.

Bocak L., Barton C., Crampton-Platt A., Chesters D., Ahrens D., Vogler A.P. Building the Coleoptera tree-of-life for >8000 species: Composition of public DNA data and fit with Linnaean classification. Syst. Entomol. 2014;39:97–110. doi: 10.1111/syen.12037. DOI

Stibick J.N.L. Classification of the Elateridae (Coleoptera). Relation- ships and classification of the subfamilies and tribes. Pacif. Insects. 1979;20:145–186.

Dolin V. Meetings in Memory of N.A. Cholodovsky. Zoological Institute RAS; St. Peterburg, Russian: 2000. A role of larval and wing venation characters in the systematics of Elateroidea (Coleoptera) p. 50. Lecture at the 52nd Annual Meeting. 1 April 1999.

Schwarz O.C.E. Genera Insectorum. Volume 46. P Wytsman; Brussels, Belgium: 1906. Coleoptera, fam. Elateridae; pp. 1–224.

Dolin W.G., Girard C. Zur Kenntnis der Schnellkäfer-Gattung Diplophoenicus Candèze, 1893, aus Madagascar (Coleoptera, Elateridae) Bull. Soc. Entomol. Fr. 2003;108:55–60.

Liu Y., Song F., Jiang P., Wilson J.J., Cai W., Li H. Compositional heterogeneity in true bug mitochondrial phylogenomics. Mol. Phylogenet. Evol. 2018;118:135–144. doi: 10.1016/j.ympev.2017.09.025. PubMed DOI

Yang H., Li T., Dang K., Bu W. Compositional and mutational rate heterogeneity in mitochondrial genomes and its effect on the phylogenetic inferences of Cimicomorpha (Hemiptera: Heteroptera) BMC Genom. 2018;19:264. doi: 10.1186/s12864-018-4650-9. PubMed DOI PMC

Song F., Li H., Jiang P., Zhou X.-G., Liu J.-P., Sun C.-H., Vogler A.P., Cai W.-Z. Capturing the phylogeny of holometabola with mitochondrial genome data and Bayesian site-heterogeneous mixture models. Genome Biol. Evol. 2016;8:1411–1426. doi: 10.1093/gbe/evw086. PubMed DOI PMC

Nie R., Vogler A.P., Yang X.-K., Lin M. Higher-level phylogeny of longhorn beetles (Coleoptera: Chrysomeloidea) inferred from mitochondrial genomes. Syst. Entomol. 2021 doi: 10.1111/syen.12447. DOI

Shen X.X., Li Y., Hittinger C.T., Chen X.X., Rokas A. An investigation of irreproducibility in maximum likelihood phylogenetic inference. Nat. Commun. 2020;11:6090. doi: 10.1038/s41467-020-20005-6. PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...