Thorsmoerkia curvula gen. et spec. nov. (Trebouxiophyceae, Chlorophyta), a semi-terrestrial microalga from Iceland exhibits high levels of unsaturated fatty acids
Status PubMed-not-MEDLINE Jazyk angličtina Země Nizozemsko Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
I 1951
Austrian Science Fund FWF - Austria
P 29959
Austrian Science Fund FWF - Austria
P 34073
Austrian Science Fund FWF - Austria
P 34181
Austrian Science Fund FWF - Austria
PubMed
35309180
PubMed Central
PMC7612509
DOI
10.1007/s10811-021-02577-y
Knihovny.cz E-zdroje
- Klíčová slova
- Biodiversity, Iceland, Polyunsaturated fatty acids, Semi-terrestrial algae, Taxonomy, Trebouxiophyceae,
- Publikační typ
- časopisecké články MeSH
A terrestrial green alga was isolated at Iceland, and the strain (SAG 2627) was described for its morphology and phylogenetic position and tested for biotechnological capabilities. Cells had a distinctly curved, crescent shape with conical poles and a single parietal chloroplast. Phylogenetic analyses of 18S rDNA and rbcL markers placed the strain into the Trebouxiophyceae (Chlorophyta). The alga turned out to belong to an independent lineage without an obvious sister group within the Trebouxiophyceae. Based on morphological and phylogenetic data, the strain was described as a new genus and species, Thorsmoerkia curvula gen. et sp. nov. Biomass was generated in column reactors and subsequently screened for promising metabolites. Growth was optimized by pH-regulated, episodic CO2 supplement during the logarithmic growth-phase, and half of the biomass was thereafter exposed to nitrogen and phosphate depletion. The biomass yield reached up to 53.5 mg L-1 day-1. Fatty acid (FA) production peaked at 24 mg L-1 day-1 and up to 83% of all FAs were unsaturated. At the end of the log phase, approximately 45% of dry mass were lipids, including eicosapentaenoic acid. Carotenoid production reached up to 2.94 mg L-1 day-1 but it was halted during the stress phase. The N-linked glycans of glycoproteins were assessed to reveal chemotaxonomic patterns. The study demonstrated that new microalgae can be found at Iceland, potentially suitable for applied purposes. The advantage of T. curvula is its robustness and that significant amounts of lipids are already accumulated during log phase, making a subsequent stress exposure dispensable.
Department of Botany University of Innsbruck Sternwartestraße 15 6020 Innsbruck Austria
Department of Ecology Faculty of Science Charles University Viničná 7 12844 Prague Czech Republic
Zobrazit více v PubMed
Arnalds O. In: The Soils of Iceland, World Soil. Arnalds O, editor. Springer; Dordrecht: 2015. Collapse, erosion, condition, and restoration; pp. 153–180.
Barcytė D, Hodač L, Nedbalová L. Lunachloris lukesovae gen. et sp. nov. (Trebouxiophyceae, Chlorophyta), a novel coccoid green alga isolated from soil in South Bohemia, Czech Republic. Eur J Phycol. 2017;52:281–291.
Broady PA. The terrestrial algae of Glerardalur Akureyri, Iceland. Acta Bot Islandica. 1978;5:3–60.
Cheregi O, Ekendahl S, Engelbrektsson J, Strömberg N, Godhe A, Spetea C. Microalgae biotechnology in Nordic countries – the potential of local strains. Physiol Plantarum. 2019;166:438–450. PubMed PMC
Ciucanu I, Kerek F. A simple and rapid method for the permethylation of carbohydrates. Carbohyd Res. 1984;131:209–217.
Dal Grande F, Beck A, Cornejo C, Singh G, Cheenacharoen S, Nelsen MP, Scheidegger C. Molecular phylogeny and symbiotic selectivity of the green algal genus Dictyochloropsis s.l. (Trebouxiophyceae): a polyphyletic and widespread group forming photobiont-mediated guilds in the lichen family Lobariaceae. New Phytol. 2014;202:455–470. PubMed
Darienko T, Pröschold T. Reevaluation and discovery of new species of the rare genus Watanabea and establishment of Massjukichlorella gen. nov. (Trebouxiophyceae, Chlorophyta) using an integrative approach. J Phycol. 2019;55:493–499. PubMed
Ettl H, Gärtner G. Syllabus der Boden-, Luft-und Flechtenalgen. Gustav Fischer Verlag; Stuttgart: 2013.
Fawley MW, Fawley KP. Identification of eukaryotic microalgal strains. J Appl Phycol. 2020;32:2699–2709. PubMed PMC
Fučíková K, Pažoutová M, Rindi F. Meiotic genes and sexual reproduction in the green algal class Trebouxiophyceae (Chlorophyta) J Phycol. 2015;51:419–430. PubMed
Furey PC, Manoylov KM, Lowe RL. New and interesting aerial diatom assemblages from southwestern Iceland. Phytotaxa. 2020;428:173–208.
Geitler L. Die Chlorococcalen Dictyochloris und Dictyochloropsis nov. gen. Österr Bot Z. 1966;113:155–164.
George B, Pancha I, Desai C, Chokshi K, Paliwal C, Ghosh T, Mishra S. Effects of different media composition, light intensity and photoperiod on morphology and physiology of freshwater microalgae Ankistrodesmus falcatus - a potential strain for bio-fuel production. Bioresource Technol. 2014;171:367–374. PubMed
Hamby RK, Sims L, Issel L, Zimmer E. Direct ribosomal RNA sequencing : optimization of extraction and sequencing methods for work with higher plants. Plant Mol Biol Rep. 1988;6:175–192.
Helms G, Friedl T, Rambold G, Mayrhofer H. Identification of photobionts from the lichen family Physiaceae using algal-specific ITS rDNA sequencing. Lichenologist. 2001;33:73–86.
Hoham RW, Remias D. Snow and glacial algae: a review. J Phycol. 2020;56:264–282. PubMed PMC
Holzinger A, Roleda MY, Lütz C. The vegetative arctic freshwater green alga Zygnema is insensitive to experimental UV exposure. Micron. 2009;40:831–838. PubMed
Hotter V, Glaser K, Hartmann A, Ganzera M, Karsten U. Polyols and UV-sunscreens in the Prasiola-clade (Trebouxiophyceae, Chlorophyta) as metabolites for stress response and chemotaxonomy. J Phycol. 2018;54:264–274. PubMed PMC
Hovde BT, Hanschen ER, Steadman Tyler CR, Lo CC, Kunde Y, Davenport K, Daligault H, Msanne J, Canny S, il Eyun S, Riethoven JJM, et al. Genomic characterization reveals significant divergence within Chlorella sorokiniana (Chlorellales, Trebouxiophyceae) Algal Res. 2018;35:449–461.
Krienitz L, Bock C, Nozaki H, Wolf M. SSU rRNA gene phylogeny of morphospecies affiliated to the bioassay alga “Selenastrum capricornutum” recovered the polyphyletic origin of crescent-shaped Chlorophyta. J Phycol. 2011;47:880–893. PubMed
Kumar BR, Deviram G, Mathimani T, Duc PA, Pugazhendhi A. Microalgae as rich source of polyunsaturated fatty acids. Biocatal Agr Biotechnol. 2019;17:583–588.
Leya T. The CCCryo Culture Collection of Cryophilic Algae as a valuable bioresource for algal biodiversity and for novel, industrially marketable metabolites. Appl Phycol. 2020 doi: 10.1080/26388081.2020.1753572. DOI
Lucas PL, Dumontier R, Loutelier-Bourhis C, Mareck A, Afonso C, Lerouge P, Mati-Baouche N, Bardor M. User-friendly extraction and multistage tandem mass spectrometry based analysis of lipid-linked oligosaccharides in microalgae. Plant Methods. 2018;14:107. doi: 10.1186/s13007-018-0374-8. PubMed DOI PMC
Lutz S, Anesio AM, Edwards A, Benning LG. Microbial diversity on Icelandic glaciers and ice caps. Front Microbiol. 2015;6:307. PubMed PMC
Maltsev Y, Gusev E, Maltseva I, Kulikovskiy M, Namsaraev Z, Petrushkina M, Filimonova A, Sorokin B, Golubeva A, Butaeva G, Khrushchev A, et al. Description of a new species of soil algae, Parietochloris grandis sp. nov., and study of its fatty acid profiles under different culturing conditions. Algal Res. 2018;33:358–368.
Matsuzaki R, Kawai-Toyooka H, Hara Y, Nozaki H. Revisiting the taxonomic significance of aplanozygote morphologies of two cosmopolitan snow species of the genus Chloromonas (Volvo-cales, Chlorophyceae) Phycologia. 2015;54:491–502.
Metz S, Singer D, Domaizon I, Unrein F, Lara E. Global distribution of Trebouxiophyceae diversity explored by high-throughput sequencing and phylogenetic approaches. Environ Microbiol. 2019;21:3885–3895. PubMed
Mikhailyuk T, Holzinger A, Tsarenko P, Glaser K, Demchenko E, Karsten U. Dictyosphaerium-like morphotype in terrestrial algae: what is Xerochlorella (Trebouxiophyceae, Chlorophyta)? J Phycol. 2020;56:671–686. PubMed PMC
Mócsai R, Figl R, Troschl C, Strasser R, Svehla E, Windwarder M, Thader A, Altmann F. N-glycans of the microalga Chlorella vulgaris are of the oligomannosidic type but highly methylated. Sci Rep. 2019;9:2–9. PubMed PMC
Mócsai R, Blaukopf M, Svehla E, Kosma P, Altmann F. The N-glycans of Chlorella sorokiniana and a related strain contain arabinose but have strikingly different structures. Glycobiology. 2020a;30:563–576. PubMed
Mócsai R, Figl R, Sützl L, Fluch S, Altmann F. A first view on the unsuspected intragenus diversity of N-glycans in Chlorella microalgae. The Plant J. 2020b;103:184–196. PubMed PMC
Muggia L, Leavitt S, Barreno E. The hidden diversity of lichenised Trebouxiophyceae (Chlorophyta) Phycologia. 2018;57:503–524.
Nedbalová L, Mihál M, Kvíderová J, Procházková L, Řezanka T, Elster J. Identity, ecology and ecophysiology of planktic green algae dominating in ice-covered lakes on James Ross Island (northeastern Antarctic Peninsula) Extremophiles. 2017;21:187–200. PubMed
Neustupa J, Eliáš M, Němcová Y, Šejnohová L. Xylochloris irregularis gen. et sp. nov. (Trebouxiophyceae, Chlorophyta), a novel subaerial coccoid green alga. Phycologia. 2011;50:57–66.
Neustupa J, Němcová Y, Veselá J, Steinová J, Škaloud P. Leptochlorella corticola gen. et sp. nov. and Kalinella apyrenoidosa sp. nov.: two novel Chlorella-like green microalgae (Trebouxiophyceae, Chlorophyta) from subaerial habitats. Int J Syst Evol Micr. 2013;63:377–387. PubMed
Paliwal C, Mitra M, Bhayani K, Bharadwaj SVV, Ghosh T, Dubey S, Mishra S. Abiotic stresses as tools for metabolites in microalgae. Biores Technol. 2017;244:1216–1226. PubMed
Posada D. jModelTest: Phylogenetic model averaging. Mol Biol Evol. 2008;25:1253–1256. PubMed
Procházková L, Remias D, Řezanka T, Nedbalová L. Chloromonas nivalissubsp. tatrae subsp. nov. (Chlamydomonadales, Chlorophyta): re–examination of a snow alga from the High Tatra Mountains (Slovakia) Fottea. 2018;18:1–18. PubMed PMC
Procházková L, Remias D, Řezanka T, Nedbalová L. Ecophysiology of Chloromonas hindakii sp. nov. (Chlorophyceae), causing orange snow blooms at different light conditions. Microorganisms. 2019;7:434. doi: 10.3390/microorganisms7100434. PubMed DOI PMC
Remias D, Nicoletti C, Krennhuber K, Möderndorfer B, Nedbalová L, Procházková L. Growth, fatty, and amino acid profiles of the soil alga Vischeria sp. E71.10 (Eustigmatophyceae) under different cultivation conditions. Folia Microbiol. 2020;65:1017–1023. PubMed PMC
Sansone C, Brunet C. Promises and challenges of microalgal antioxidant production. Antioxidants. 2019;8:199. doi: 10.3390/antiox8070199. PubMed DOI PMC
Škaloud P, Peksa O. Evolutionary inferences based on ITS rDNA and actin sequences reveal extensive diversity of the common lichen alga Asterochloris . Mol Phylogenet Evol. 2010;54:36–46. PubMed
Škaloud P, Steinová J, Řídká T, Vančurová L, Peksa O. Assembling the challenging puzzle of algal biodiversity: species delimitation within the genus Asterochloris (Trebouxiophyceae, Chlorophyta) J Phycol. 2015;51:507–527. PubMed
Škaloud P, Friedl T, Hallmann C, Beck A, Dal Grande F. Taxonomic revision and species delimitation of coccoid green algae currently assigned to the genus Dictyochloropsis (Trebouxiophyceae, Chlorophyta) J Phycol. 2016;52:599–617. PubMed
Song H, Zhang Q, Liu G, Hu Z. Polulichloris henanensis gen. et sp. nov. (Trebouxiophyceae, Chlorophyta), a novel subaerial coccoid green alga. Phytotaxa. 2015;218:137–146.
Spijkerman E, Wacker A, Weithoff G, Leya T. Elemental and fatty acid composition of snow algae in Arctic habitats. Front Microbiol. 2012;3:1–15. doi: 10.3389/fmicb.2012.00380. PubMed DOI PMC
Steinrücken P, Erga SR, Mjøs SA, Kleivdal H, Prestegard SK. Bioprospecting North Atlantic microalgae with fast growth and high polyunsaturated fatty acid (PUFA) content for microalgae-based technologies. Algal Res. 2017;26:392–401. PubMed PMC
Ulrich S, Röske K. Autumnella lusatica gen. nov. and sp. nov. (Chlorophyta, Trebouxiophyceae), a new phytoplankton species in acidic lignite pit lakes. Phycologia. 2018;57:251–261.
Vančurová L, Peksa O, Němcová Y, Škaloud P. Vulcanochloris (Trebouxiales, Trebouxiophyceae), a new genus of lichen photobiont from La Palma, Canary Islands, Spain. Phytotaxa. 2015;219:118–132.
Vilgalys R, Hester M. Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptoccocus species. J Bacteriol. 1990;172:4238–4246. PubMed PMC
White TJ, Bruns T, Lee S, Taylor J. In: PCR Protocols-a Guide to Methods and Applications. Innis TJ, Gelfand MA, Sninsky DH, White JJ, editors. Academic Press; London: 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics; pp. 315–322.