Growth, fatty, and amino acid profiles of the soil alga Vischeria sp. E71.10 (Eustigmatophyceae) under different cultivation conditions
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
P 29959
Austrian Science Fund FWF - Austria
P29959
Austrian Science Fund
PubMed
32696198
PubMed Central
PMC7716935
DOI
10.1007/s12223-020-00810-8
PII: 10.1007/s12223-020-00810-8
Knihovny.cz E-zdroje
- MeSH
- aminokyseliny metabolismus MeSH
- biomasa MeSH
- biotechnologie MeSH
- dusík metabolismus MeSH
- Heterokontophyta klasifikace genetika růst a vývoj metabolismus MeSH
- kultivační média chemie MeSH
- kyselina eikosapentaenová analogy a deriváty metabolismus MeSH
- mastné kyseliny metabolismus MeSH
- mikrořasy metabolismus MeSH
- půda * MeSH
- ribozomální DNA MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Německo MeSH
- Názvy látek
- aminokyseliny MeSH
- dusík MeSH
- eicosapentaenoic acid ethyl ester MeSH Prohlížeč
- kultivační média MeSH
- kyselina eikosapentaenová MeSH
- mastné kyseliny MeSH
- půda * MeSH
- ribozomální DNA MeSH
In this study, a unicellular soil alga isolated from farmland in Germany was surveyed. The investigation of the hypervariable molecular markers ITS1 rDNA and ITS2 rDNA identified strain E71.10 as conspecific with Vischeria sp. SAG 51.91 (Eustigmatophyceae). The culture was tested for biomass generation and for the yield of fatty acids and amino acids. The survey included four different culture conditions (conventional, elevated CO2, nitrogen depletion, or sodium chloride stress) at room temperature. The best yield of dry biomass was achieved applying 1% CO2, whereas nitrogen-free medium resulted into least growth. The fatty acid content peaked in nitrogen-free medium at 59% per dry mass. Eicosapentaenoic acid was the most abundant fatty acid in all treatments (except for nitrogen free), accounting for 10.44 to 16.72 g/100 g dry mass. The highest content of amino acids (20%) was achieved under conventional conditions. The results show that abiotic factors strongly influence to which extent metabolites are intracellularly stored and they confirm also for this yet undescribed strain of Vischeria that Eustigmatophyceae are promising candidates for biotechnology.
Department of Ecology Faculty of Science Charles University 12843 Prague Czech Republic
School of Engineering University of Applied Sciences Upper Austria 4600 Wels Austria
Zobrazit více v PubMed
Ankenbrand MJ, Keller A, Wolf M, Schultz J, Förster F. ITS2 database V: twice as much. Mol Biol Evol. 2015;32:3030–3032. doi: 10.1093/molbev/msv174. PubMed DOI
Cepák V, Přibyl P, Kohoutková J, Kaštánek P. Optimization of cultivation conditions for fatty acid composition and EPA production in the eustigmatophycean microalga Trachydiscus minutus. J Appl Phycol. 2014;26:181–190. doi: 10.1007/s10811-013-0119-z. DOI
Chua ET, Schenk PM. A biorefinery for Nannochloropsis: induction, harvesting, and extraction of EPA-rich oil and high-value protein. Bioresour Technol. 2017;244:1416–1424. doi: 10.1016/j.biortech.2017.05.124. PubMed DOI
Coleman AW. The significance of a coincidence between evolutionary landmarks found in mating affinity and a DNA sequence. Protist. 2000;151:1–9. doi: 10.1078/1434-4610-00002. PubMed DOI
Coleman AW. Pan-eukaryote ITS2 homologies revealed by RNA secondary structure. Nucleic Acids Res. 2007;35:3322–3329. doi: 10.1093/nar/gkm233. PubMed DOI PMC
Darty K, Denise A, Ponty Y. Interactive drawing and editing of the RNA secondary structure. Bioinformatics. 2009;25:1974–1975. doi: 10.1093/bioinformatics/btp250. PubMed DOI PMC
Ettl H, Gärtner G. Syllabus der Boden-, Luft- und Flechtenalgen. Berlin: Springer; 2014.
Fawley KP, Eliáš M, Fawley MW. The diversity and phylogeny of the commercially important algal class Eustigmatophyceae, including the new clade Goniochloridales. J Appl Phycol. 2014;26:1773–1782. doi: 10.1007/s10811-013-0216-z. DOI
Fountoulakis M, Lahm HW. Hydrolysis and amino acid composition analysis of proteins. J Chromatogr A. 1998;826:109–134. doi: 10.1016/S0021-9673(98)00721-3. PubMed DOI
Gao B, Yang J, Lei X, Xia S, Li A, Zhang C. Characterization of cell structural change, growth, lipid accumulation, and pigment profile of a novel oleaginous microalga, Vischeria stellata (Eustigmatophyceae), cultured with different initial nitrate supplies. J Appl Phycol. 2016;28:821–830. doi: 10.1007/s10811-015-0626-1. DOI
Gao B, Huang L, Wang F, Zhang C. Trachydiscus guangdongensis sp. nov., a new member of Eustigmatophyceae (Stramenopiles) isolated from China: morphology, phylogeny, fatty acid profile, pigment, and cell wall composition. Hydrobiologia. 2019;835:37–47. doi: 10.1007/s10750-019-3925-8. DOI
Gärtner G. ASIB – the culture collection of algae at the botanical Institute of the University at Innsbruck (Austria). − catalogue of strains 1996. Ber nat-med Verein Innsbruck. 1996;83:45–69.
Keller A, Schleicher T, Schultz J, Müller T, Dandekar T, Wolf M. 5.8S-28S rRNA interaction and HMM-based ITS2 annotation. Gene. 2009;430:50–57. doi: 10.1016/j.gene.2008.10.012. PubMed DOI
Kryvenda A, Rybalka N, Wolf M, Friedl T. Species distinctions among closely related strains of Eustigmatophyceae (Stramenopiles) emphasizing ITS2 sequence-structure data: Eustigmatos and Vischeria. Eur J Phycol. 2018;53:471–491. doi: 10.1080/09670262.2018.1475015. DOI
Lang I, Hodač L, Friedl T, Feussner I. Fatty acid profiles and their distribution patterns in microalgae: a comprehensive analysis of more than 2000 strains from the SAG culture collection. BMC Plant Biol. 2011;11:124. doi: 10.1186/1471-2229-11-124. PubMed DOI PMC
Li Z, Sun M, Li Q, Li A, Zhang C. Profiling of carotenoids in six microalgae (Eustigmatophyceae) and assessment of their ß-carotene productions in bubble column photobioreactor. Biotechnol Lett. 2012;34:2049–2053. doi: 10.1007/s10529-012-0996-2. PubMed DOI
Müller T, Philippi N, Dandekar T, Schultz J, Wolf M. Distinguishing species. RNA. 2007;13:1469–1472. doi: 10.1261/rna.617107. PubMed DOI PMC
Neustupa J, Němcová Y. Morphological and taxonomic study of three terrestrial eustigmatophycean species. Beih Nova Hedwigia. 2001;123:373–386.
Procházková L, Remias D, Řezanka T, Nedbalová L. Chloromonas nivalis subsp. tatrae, subsp. nov. (Chlamydomonadales, Chlorophyta): re-examination of a snow alga from the high Tatra Mountains (Slovakia) Fottea. 2018;18:1–18. doi: 10.5507/fot.2017.010. PubMed DOI PMC
Qunju H, Wenzhou X, Fangfang Y, Tao L, Guanghua W, Shikun D, Hualian W, Jiewei F. Evaluation of five Nannochloropsis sp. strains for biodiesel and poly-unsaturated fatty acids (PUFAs) production. Curr Synthetic Sys Biol. 2016;4:128. doi: 10.4172/2332-0737.1000128. DOI
Sautthof W, Oesterreicher W. Untersuchungen über den Einfluß einer intensive Pflanzenproduktion auf die Zusammensetzung der Bodenalgenflora. In: Bartels G, Kampmann T, editors. Effects of a long-term application of plant protection products used in different intensities and development of assessment criterions. Berlin/Wien: Blackwell-Wiss.-Verlag; 1994. pp. 167–191.
Schultz J, Wolf M. ITS2 sequence-structure analysis in phylogenetics: a how-to manual for molecular systematics. Mol Phylogenet Evol. 2009;52:520–523. doi: 10.1016/j.ympev.2009.01.008. PubMed DOI
Schuster R. Determination of amino acids in biological, pharmaceutical, plant and food samples by automated precolumn derivatization and high-performance liquid chromatography. J Chromatogr B. 1988;431:271–284. doi: 10.1016/s0378-4347(00)83096-0. PubMed DOI
Seibel PN, Müller T, Dandekar T, Schultz J, Wolf M. 4SALE--a tool for synchronous RNA sequence and secondary structure alignment and editing. BMC Bioinformatics. 2006;7:498. doi: 10.1186/1471-2105-7-498. PubMed DOI PMC
Seibel PN, Müller T, Dandekar T, Wolf M. Synchronous visual analysis and editing of RNA sequence and secondary structure alignments using 4SALE. BMC Res Notes. 2008;1:91. doi: 10.1186/1756-0500-1-91. PubMed DOI PMC
Stoyneva-Gärtner M, Uzunov B, Gärtner G, Borisova C, Draganova P, Radkova M, Stoykova P, Atanassov I. Current bioeconomical interest in stramenopilic Eustigmatophyceae: a review. Biotechnol Biotec Equ. 2019;33:302–314. doi: 10.1080/13102818.2019.1573154. DOI
Tibbetts SM, Milley JE, Lall SP. Chemical composition and nutritional properties of freshwater and marine microalgal biomass cultured in photobioreactors. J Appl Phycol. 2015;27:1109–1119. doi: 10.1007/s10811-014-0428-x. DOI
Wang F, Gao B, Huang L, Su M, Dai C, Zhang C. Evaluation of oleaginous eustigmatophycean microalgae as potential biorefinery feedstock for the production of palmitoleic acid and biodiesel. Bioresour Technol. 2018;270:30–37. doi: 10.1016/j.biortech.2018.09.016. PubMed DOI
Welz W, Sattler W, Leis HJ, Malle E. Rapid analysis of non-esterified fatty acids as methyl esters from different biological specimens by gas chromatography after one-step esterification. J Chromatogr B. 1990;526:319–329. doi: 10.1016/S0378-4347(00)82516-5. PubMed DOI
Yang EC, Boo GH, Kim HJ, Cho SM, Boo SM, Andersen RA, Yoon HS. Supermatrix data highlight the phylogenetic relationships of photosynthetic stramenopiles. Protist. 2012;163:217–231. doi: 10.1016/j.protis.2011.08.001. PubMed DOI
Yurchenko T, Ševčíková T, Strnad H, Butenko A, Eliáš M. The plastid genome of some eustigmatophyte algae harbours a bacteria-derived six-gene cluster for biosynthesis of a novel secondary metabolite. Open Biol. 2016;6:160249. doi: 10.1098/rsob.160249. PubMed DOI PMC
Zuker M. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 2003;31:3406–3415. doi: 10.1093/nar/gkg595. PubMed DOI PMC