Cysts of the Snow Alga Chloromonas krienitzii (Chlorophyceae) Show Increased Tolerance to Ultraviolet Radiation and Elevated Visible Light

. 2020 ; 11 () : 617250. [epub] 20201217

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33391329

Grantová podpora
P 29959 Austrian Science Fund FWF - Austria

Melting mountainous snowfields are populated by extremophilic microorganisms. An alga causing orange snow above timberline in the High Tatra Mountains (Poland) was characterised using multiple methods examining its ultrastructure, genetics, life cycle, photosynthesis and ecophysiology. Based on light and electron microscopy and ITS2 rDNA, the species was identified as Chloromonas krienitzii (Chlorophyceae). Recently, the taxon was described from Japan. However, cellular adaptations to its harsh environment and details about the life cycle were so far unknown. In this study, the snow surface population consisted of egg-shaped cysts containing large numbers of lipid bodies filled presumably with the secondary carotenoid astaxanthin. The outer, spiked cell wall was shed during cell maturation. Before this developmental step, the cysts resembled a different snow alga, Chloromonas brevispina. The remaining, long-lasting smooth cell wall showed a striking UV-induced blue autofluorescence, indicating the presence of short wavelengths absorbing, protective compounds, potentially sporopollenin containing polyphenolic components. Applying a chlorophyll fluorescence assay on intact cells, a significant UV-A and UV-B screening capability of about 30 and 50%, respectively, was measured. Moreover, intracellular secondary carotenoids were responsible for a reduction of blue-green light absorbed by chloroplasts by about 50%. These results revealed the high capacity of cysts to reduce the impact of harmful UV and high visible irradiation to the chloroplast and nucleus when exposed at alpine snow surfaces during melting. Consistently, the observed photosynthetic performance of photosystem II (evaluated by fluorometry) showed no decline up to 2100 μmol photons m-2 s-1. Cysts accumulated high contents of polyunsaturated fatty acids (about 60% of fatty acids), which are advantageous at low temperatures. In the course of this study, C. krienitzii was found also in Slovakia, Italy, Greece and the United States, indicating a widespread distribution in the Northern Hemisphere.

Zobrazit více v PubMed

Bilger W., Veit M., Schreiber L., Schreiber U. (1997). Measurement of leaf epidermal transmittance of UV radiation by chlorophyll fluorescence. DOI

Bischoff H. W., Bold H. C. (1963).

Bligh E. G., Dyer W. J. (1959). A rapid method of total lipid extraction and purification. PubMed

Brown S. P., Tucker A. E. (2020). Distribution and biogeography of PubMed DOI PMC

Cepák V., Lukavský J. (2012). Cryoseston in the Sierra Nevada Mountains (Spain). DOI

Chodat R. (1921). Algues de la région du Grand St. Bernard.

Dembitsky V. M., Rezanka T., Rozentsvet O. A. (1993). Lipid composition of three macrophytes from the Caspian Sea. DOI

Di Mauro B., Garzonio R., Baccolo G., Franzetti A., Pittino F., Leoni B., et al. (2020). Glacier algae foster ice-albedo feedback in the European Alps. PubMed DOI PMC

Engstrom C. B., Yakimovich K. M., Quarmby L. M. (2020). Variation in snow algae blooms in the coast mountains of British Columbia. PubMed DOI PMC

Gorton H. L., Vogelmann T. C. (2003). Ultraviolet radiation and the snow alga PubMed DOI

Gray A., Krolikowski M., Fretwell P., Convey P., Peck L. S., Mendelova M., et al. (2020). Remote sensing reveals Antarctic green snow algae as important terrestrial carbon sink. PubMed DOI PMC

Hoham R. W. (1975). The life history and ecology of the snow alga DOI

Hoham R. W., Berman J. D., Rogers H. S., Felio J. H., Ryba J. B., Miller P. R. (2006). Two new species of green snow algae from Upstate New York, DOI

Hoham R. W., Mullet J. E. (1977). The life history and ecology of the snow alga DOI

Hoham R. W., Mullet J. E., Roemer S. C. (1983). The life history and ecology of the snow alga DOI

Hoham R. W., Remias D. (2020). Snow and glacial algae: a review. PubMed DOI PMC

Hoham R. W., Roemer S. C., Mullet J. E. (1979). The life history and ecology of the snow alga DOI

Holzinger A., Lütz C. (2006). Algae and UV irradiation: effects on ultrastructure and related metabolic functions. PubMed DOI

Khan A. L., Dierssen H., Scambos T., Höfer J., Cordero R. R. (2020). Spectral characterization, radiative forcing, and pigment content of coastal Antarctic snow algae: approaches to spectrally discriminate red and green communities and their impact on snowmelt. DOI

Kol E. (1966). Snow algae from the valley of the Morskie Oko lake in the High Tatra.

Kol E. (1968). “Kryobiologie; biologie und limnologie des schnees und eises. I. Kryovegetation,” in

Leya T. (2013). “Snow algae: adaptation strategies to survive on snow and ice,” in DOI

Leya T. (2020). The CCCryo culture collection of cryophilic algae as a valuable bioresource for algal biodiversity and for novel, industrially marketable metabolites. DOI

Lukavský J., Cepák V. (2010). Cryoseston in Stara Planina (Balkan) Mountains, Bulgaria.

Lukeš M., Procházková L., Shmidt V., Nedbalová L., Kaftan D. (2014). Temperature dependence of photosynthesis and thylakoid lipid composition in the red snow alga PubMed DOI

Luo W., Ding H., Li H., Ji Z., Huang K., Zhao W., et al. (2020). Molecular diversity of the microbial community in coloured snow from the Fildes Peninsula (King George Island, Maritime Antarctica). DOI

Lutz S., Procházková L., Benning L. G., Nedbalová L., Remias D. (2019). Evaluating amplicon high–throughput sequencing data of microalgae living in melting snow: improvements and limitations. PubMed DOI PMC

Matsuzaki R., Kawachi M., Nozaki H., Nohara S., Suzuki I. (2020). Sexual reproduction of the snow alga PubMed DOI PMC

Matsuzaki R., Kawai-Toyooka H., Hara Y., Nozaki H. (2015). Revisiting the taxonomic significance of aplanozygote morphologies of two cosmopolitan snow species of the genus DOI

Matsuzaki R., Nozaki H., Takeuchi N., Hara Y., Kawachi M. (2019). Taxonomic re-examination of “ PubMed DOI PMC

Morgan-Kiss R. M., Priscu J. C., Pocock T., Gudynaite-Savitch L., Huner N. P. A. (2006). Adaptation and acclimation of photosynthetic microorganisms to permanently cold environments. PubMed DOI PMC

Nedbalová L., Kociánová M., Lukavský J. (2008). Ecology of snow algae in the Giant Mts.

Nichelmann L., Schulze M., Herppich W. B., Bilger W. (2016). A simple indicator for non-destructive estimation of the violaxanthin cycle pigment content in leaves. PubMed DOI

Onuma Y., Takeuchi N., Takeuchi Y. (2016). Temporal changes in snow algal abundance on surface snow in Tohkamachi, Japan. DOI

Pescheck F., Bilger W. (2018). Compensation of lack of UV screening by cellular tolerance in green macroalgae (Ulvophyceae) from the upper eulittoral. DOI

Piercey-Normore M. D., DePriest P. T. (2001). Algal switching among lichen symbioses. PubMed DOI

Procházková L., Leya T., Křížková H., Nedbalová L. (2019a). PubMed DOI PMC

Procházková L., Remias D., Holzinger A., Řezanka T., Nedbalová L. (2018a). Ecophysiological and morphological comparison of two populations of PubMed DOI PMC

Procházková L., Remias D., Řezanka T., Nedbalová L. (2018b). PubMed DOI PMC

Procházková L., Remias D., Řezanka T., Nedbalová L. (2019b). Ecophysiology of PubMed DOI PMC

Remias D. (2012). “Cell structure and physiology of alpine snow and ice algae,” in DOI

Remias D., Karsten U., Lűtz C., Leya T. (2010). Physiological and morphological processes in the Alpine snow alga PubMed DOI

Remias D., Lütz-Meindl U., Lütz C. (2005). Photosynthesis, pigments and ultrastructure of the alpine snow alga DOI

Remias D., Nicoletti C., Krennhuber K., Möderndorfer B., Nedbalová L., Procházková L. (2020). Growth, fatty, and amino acid profiles of the soil alga PubMed DOI PMC

Remias D., Pichrtová M., Pangratz M., Lütz C., Holzinger A. (2016). Ecophysiology, secondary pigments and ultrastructure of PubMed DOI PMC

Remias D., Wastian H., Lütz C., Leya T. (2013). Insights into the biology and phylogeny of DOI

Řezanka T., Dembitsky V. (1999). Novel brominated lipidic compounds from lichens of Central Asia. PubMed DOI

Řezanka T., Nedbalová L., Procházková L., Sigler K. (2014). Lipidomic profiling of snow algae by ESI-MS and silver-LC/APCI-MS. PubMed DOI

Saunders R. D., Horrocks L. A. (1984). Simultaneous extraction and preparation for high-performance liquid chromatography of prostaglandins and phospholipids. PubMed DOI

Segawa T., Matsuzaki R., Takeuchi N., Akiyoshi A., Navarro F., Sugiyama S., et al. (2018). Bipolar dispersal of red-snow algae. PubMed DOI PMC

Senger H., Pfau J., Werthmueller K. (1972). “Continuous automatic cultivation of homocontinuous and synchronized microalgae,” in DOI

Spijkerman E., Wacker A., Weithoff G., Leya T. (2012). Elemental and fatty acid composition of snow algae in Arctic habitats. PubMed DOI PMC

Starr R., Zeikus J. (1993). UTEX—the culture collection of algae at the University of Texas at Austin 1993 list of cultures. DOI

Thompson G. A. (1996). Lipids and membrane function in green algae. PubMed DOI

VanWinkle-Swift K. P., Rickoll W. L. (1997). The zygospore wall of DOI

Versteegh G. J. M., Blokker P. (2004). Resistant macromolecules of extant and fossil microalgae. DOI

Vieler A., Wilhelm C., Goss R., Süß R., Schiller J. (2007). The lipid composition of the unicellular green alga PubMed DOI

Webb W. L., Newton M., Starr D. (1974). Carbon dioxide exchange of PubMed DOI

Xiong F., Komenda J., Kopecký J., Nedbal L. (1997). Strategies of ultraviolet-B protection in microscopic algae. DOI

Yakimovich K. M., Engstrom C. B., Quarmby L. M. (2020). Alpine snow algae microbiome diversity in the Coast Range of British Columbia. PubMed DOI PMC

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...