Cysts of the Snow Alga Chloromonas krienitzii (Chlorophyceae) Show Increased Tolerance to Ultraviolet Radiation and Elevated Visible Light
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
Grantová podpora
P 29959
Austrian Science Fund FWF - Austria
PubMed
33391329
PubMed Central
PMC7773729
DOI
10.3389/fpls.2020.617250
Knihovny.cz E-zdroje
- Klíčová slova
- UV-A radiation, UV-B radiation, astaxanthin, chlorophyll fluorescence, cysts, photosynthesis, polyunsaturated fatty acids, snow algae,
- Publikační typ
- časopisecké články MeSH
Melting mountainous snowfields are populated by extremophilic microorganisms. An alga causing orange snow above timberline in the High Tatra Mountains (Poland) was characterised using multiple methods examining its ultrastructure, genetics, life cycle, photosynthesis and ecophysiology. Based on light and electron microscopy and ITS2 rDNA, the species was identified as Chloromonas krienitzii (Chlorophyceae). Recently, the taxon was described from Japan. However, cellular adaptations to its harsh environment and details about the life cycle were so far unknown. In this study, the snow surface population consisted of egg-shaped cysts containing large numbers of lipid bodies filled presumably with the secondary carotenoid astaxanthin. The outer, spiked cell wall was shed during cell maturation. Before this developmental step, the cysts resembled a different snow alga, Chloromonas brevispina. The remaining, long-lasting smooth cell wall showed a striking UV-induced blue autofluorescence, indicating the presence of short wavelengths absorbing, protective compounds, potentially sporopollenin containing polyphenolic components. Applying a chlorophyll fluorescence assay on intact cells, a significant UV-A and UV-B screening capability of about 30 and 50%, respectively, was measured. Moreover, intracellular secondary carotenoids were responsible for a reduction of blue-green light absorbed by chloroplasts by about 50%. These results revealed the high capacity of cysts to reduce the impact of harmful UV and high visible irradiation to the chloroplast and nucleus when exposed at alpine snow surfaces during melting. Consistently, the observed photosynthetic performance of photosystem II (evaluated by fluorometry) showed no decline up to 2100 μmol photons m-2 s-1. Cysts accumulated high contents of polyunsaturated fatty acids (about 60% of fatty acids), which are advantageous at low temperatures. In the course of this study, C. krienitzii was found also in Slovakia, Italy, Greece and the United States, indicating a widespread distribution in the Northern Hemisphere.
Botanical Institute Christian Albrechts University Kiel Kiel Germany
Faculty of Science Charles University Prague Czechia
Institute of Microbiology The Czech Academy of Sciences Prague Czechia
School of Engineering University of Applied Sciences Upper Austria Wels Austria
Zobrazit více v PubMed
Bilger W., Veit M., Schreiber L., Schreiber U. (1997). Measurement of leaf epidermal transmittance of UV radiation by chlorophyll fluorescence. DOI
Bischoff H. W., Bold H. C. (1963).
Bligh E. G., Dyer W. J. (1959). A rapid method of total lipid extraction and purification. PubMed
Brown S. P., Tucker A. E. (2020). Distribution and biogeography of PubMed DOI PMC
Cepák V., Lukavský J. (2012). Cryoseston in the Sierra Nevada Mountains (Spain). DOI
Chodat R. (1921). Algues de la région du Grand St. Bernard.
Dembitsky V. M., Rezanka T., Rozentsvet O. A. (1993). Lipid composition of three macrophytes from the Caspian Sea. DOI
Di Mauro B., Garzonio R., Baccolo G., Franzetti A., Pittino F., Leoni B., et al. (2020). Glacier algae foster ice-albedo feedback in the European Alps. PubMed DOI PMC
Engstrom C. B., Yakimovich K. M., Quarmby L. M. (2020). Variation in snow algae blooms in the coast mountains of British Columbia. PubMed DOI PMC
Gorton H. L., Vogelmann T. C. (2003). Ultraviolet radiation and the snow alga PubMed DOI
Gray A., Krolikowski M., Fretwell P., Convey P., Peck L. S., Mendelova M., et al. (2020). Remote sensing reveals Antarctic green snow algae as important terrestrial carbon sink. PubMed DOI PMC
Hoham R. W. (1975). The life history and ecology of the snow alga DOI
Hoham R. W., Berman J. D., Rogers H. S., Felio J. H., Ryba J. B., Miller P. R. (2006). Two new species of green snow algae from Upstate New York, DOI
Hoham R. W., Mullet J. E. (1977). The life history and ecology of the snow alga DOI
Hoham R. W., Mullet J. E., Roemer S. C. (1983). The life history and ecology of the snow alga DOI
Hoham R. W., Remias D. (2020). Snow and glacial algae: a review. PubMed DOI PMC
Hoham R. W., Roemer S. C., Mullet J. E. (1979). The life history and ecology of the snow alga DOI
Holzinger A., Lütz C. (2006). Algae and UV irradiation: effects on ultrastructure and related metabolic functions. PubMed DOI
Khan A. L., Dierssen H., Scambos T., Höfer J., Cordero R. R. (2020). Spectral characterization, radiative forcing, and pigment content of coastal Antarctic snow algae: approaches to spectrally discriminate red and green communities and their impact on snowmelt. DOI
Kol E. (1966). Snow algae from the valley of the Morskie Oko lake in the High Tatra.
Kol E. (1968). “Kryobiologie; biologie und limnologie des schnees und eises. I. Kryovegetation,” in
Leya T. (2013). “Snow algae: adaptation strategies to survive on snow and ice,” in DOI
Leya T. (2020). The CCCryo culture collection of cryophilic algae as a valuable bioresource for algal biodiversity and for novel, industrially marketable metabolites. DOI
Lukavský J., Cepák V. (2010). Cryoseston in Stara Planina (Balkan) Mountains, Bulgaria.
Lukeš M., Procházková L., Shmidt V., Nedbalová L., Kaftan D. (2014). Temperature dependence of photosynthesis and thylakoid lipid composition in the red snow alga PubMed DOI
Luo W., Ding H., Li H., Ji Z., Huang K., Zhao W., et al. (2020). Molecular diversity of the microbial community in coloured snow from the Fildes Peninsula (King George Island, Maritime Antarctica). DOI
Lutz S., Procházková L., Benning L. G., Nedbalová L., Remias D. (2019). Evaluating amplicon high–throughput sequencing data of microalgae living in melting snow: improvements and limitations. PubMed DOI PMC
Matsuzaki R., Kawachi M., Nozaki H., Nohara S., Suzuki I. (2020). Sexual reproduction of the snow alga PubMed DOI PMC
Matsuzaki R., Kawai-Toyooka H., Hara Y., Nozaki H. (2015). Revisiting the taxonomic significance of aplanozygote morphologies of two cosmopolitan snow species of the genus DOI
Matsuzaki R., Nozaki H., Takeuchi N., Hara Y., Kawachi M. (2019). Taxonomic re-examination of “ PubMed DOI PMC
Morgan-Kiss R. M., Priscu J. C., Pocock T., Gudynaite-Savitch L., Huner N. P. A. (2006). Adaptation and acclimation of photosynthetic microorganisms to permanently cold environments. PubMed DOI PMC
Nedbalová L., Kociánová M., Lukavský J. (2008). Ecology of snow algae in the Giant Mts.
Nichelmann L., Schulze M., Herppich W. B., Bilger W. (2016). A simple indicator for non-destructive estimation of the violaxanthin cycle pigment content in leaves. PubMed DOI
Onuma Y., Takeuchi N., Takeuchi Y. (2016). Temporal changes in snow algal abundance on surface snow in Tohkamachi, Japan. DOI
Pescheck F., Bilger W. (2018). Compensation of lack of UV screening by cellular tolerance in green macroalgae (Ulvophyceae) from the upper eulittoral. DOI
Piercey-Normore M. D., DePriest P. T. (2001). Algal switching among lichen symbioses. PubMed DOI
Procházková L., Leya T., Křížková H., Nedbalová L. (2019a). PubMed DOI PMC
Procházková L., Remias D., Holzinger A., Řezanka T., Nedbalová L. (2018a). Ecophysiological and morphological comparison of two populations of PubMed DOI PMC
Procházková L., Remias D., Řezanka T., Nedbalová L. (2018b). PubMed DOI PMC
Procházková L., Remias D., Řezanka T., Nedbalová L. (2019b). Ecophysiology of PubMed DOI PMC
Remias D. (2012). “Cell structure and physiology of alpine snow and ice algae,” in DOI
Remias D., Karsten U., Lűtz C., Leya T. (2010). Physiological and morphological processes in the Alpine snow alga PubMed DOI
Remias D., Lütz-Meindl U., Lütz C. (2005). Photosynthesis, pigments and ultrastructure of the alpine snow alga DOI
Remias D., Nicoletti C., Krennhuber K., Möderndorfer B., Nedbalová L., Procházková L. (2020). Growth, fatty, and amino acid profiles of the soil alga PubMed DOI PMC
Remias D., Pichrtová M., Pangratz M., Lütz C., Holzinger A. (2016). Ecophysiology, secondary pigments and ultrastructure of PubMed DOI PMC
Remias D., Wastian H., Lütz C., Leya T. (2013). Insights into the biology and phylogeny of DOI
Řezanka T., Dembitsky V. (1999). Novel brominated lipidic compounds from lichens of Central Asia. PubMed DOI
Řezanka T., Nedbalová L., Procházková L., Sigler K. (2014). Lipidomic profiling of snow algae by ESI-MS and silver-LC/APCI-MS. PubMed DOI
Saunders R. D., Horrocks L. A. (1984). Simultaneous extraction and preparation for high-performance liquid chromatography of prostaglandins and phospholipids. PubMed DOI
Segawa T., Matsuzaki R., Takeuchi N., Akiyoshi A., Navarro F., Sugiyama S., et al. (2018). Bipolar dispersal of red-snow algae. PubMed DOI PMC
Senger H., Pfau J., Werthmueller K. (1972). “Continuous automatic cultivation of homocontinuous and synchronized microalgae,” in DOI
Spijkerman E., Wacker A., Weithoff G., Leya T. (2012). Elemental and fatty acid composition of snow algae in Arctic habitats. PubMed DOI PMC
Starr R., Zeikus J. (1993). UTEX—the culture collection of algae at the University of Texas at Austin 1993 list of cultures. DOI
Thompson G. A. (1996). Lipids and membrane function in green algae. PubMed DOI
VanWinkle-Swift K. P., Rickoll W. L. (1997). The zygospore wall of DOI
Versteegh G. J. M., Blokker P. (2004). Resistant macromolecules of extant and fossil microalgae. DOI
Vieler A., Wilhelm C., Goss R., Süß R., Schiller J. (2007). The lipid composition of the unicellular green alga PubMed DOI
Webb W. L., Newton M., Starr D. (1974). Carbon dioxide exchange of PubMed DOI
Xiong F., Komenda J., Kopecký J., Nedbal L. (1997). Strategies of ultraviolet-B protection in microscopic algae. DOI
Yakimovich K. M., Engstrom C. B., Quarmby L. M. (2020). Alpine snow algae microbiome diversity in the Coast Range of British Columbia. PubMed DOI PMC
Phylogeny and lipid profiles of snow-algae isolated from Norwegian red-snow microbiomes