Pseudotrichonympha leei, Pseudotrichonympha lifesoni, and Pseudotrichonympha pearti, new species of parabasalian flagellates and the description of a rotating subcellular structure
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
29180788
PubMed Central
PMC5703945
DOI
10.1038/s41598-017-16259-8
PII: 10.1038/s41598-017-16259-8
Knihovny.cz E-zdroje
- MeSH
- fylogeneze MeSH
- Isoptera parazitologie MeSH
- mikroskopie MeSH
- Parabasalidea klasifikace cytologie fyziologie MeSH
- protozoální geny MeSH
- RNA ribozomální genetika MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- RNA ribozomální MeSH
Pseudotrichonympha is a large and structurally complex genus of parabasalian protists that play a key role in the digestion of lignocellulose in the termite hindgut. Like many termite symbionts, it has a conspicuous body plan that makes genus-level identification relatively easy, but species-level diversity of Pseudotrichonympha is understudied. Molecular surveys have suggested the diversity is much greater than the current number of described species, and that many "species" described in multiple hosts are in fact different, but gene sequences from formally described species remain a rarity. Here we describe three new species from Coptotermes and Prorhinotermes hosts, including small subunit ribosomal RNA (SSU rRNA) sequences from single cells. Based on host identification by morphology and DNA barcoding, as well as the morphology and phylogenetic position of each symbiont, all three represent new Pseudotrichonympha species: P. leei, P. lifesoni, and P. pearti. Pseudotrichonympha leei and P. lifesoni, both from Coptotermes, are closely related to other Coptotermes symbionts including the type species, P. hertwigi. Pseudotrichonympha pearti is the outlier of the trio, more distantly related to P. leei and P. lifesoni than they are to one another, and contains unique features, including an unusual rotating intracellular structure of unknown function.
Department of Botany University of British Columbia Vancouver British Columbia Canada
Fort Lauderdale Research and Education Center University of Florida Davie Florida USA
Institute of Parasitology Biology Centre Czech Academy of Sciences České Budějovice Czech Republic
Zobrazit více v PubMed
Brune A. Symbiotic digestion of lignocellulose in termite guts. Nat. Rev. Microbiol. 2014;12:168–180. doi: 10.1038/nrmicro3182. PubMed DOI
Brugerolle, G. & Lee, J. J. Parabasalia in The IllustratedGuideto the Protozoa (eds. Lee, J. J., Leedale, G. F. & Bradbury, P. C.) 1196–1250 (Society of Protozoology, 2000).
Hollande A, Carruette-Valentin J. Les atractophores, l’induction du fuseau et la division cellulaire chez les Hypermastigines. Étudeinfrastructurale et révisionsystématique des Trichonymphines et des Spirotrichonymphines. Protistologica. 1971;7:5–100.
Čepička I, Hampl V, Kulda J. Critical taxonomic revision of parabasalids with description of one new genus and three new species. Protist. 2010;161:400–433. doi: 10.1016/j.protis.2009.11.005. PubMed DOI
Hartmann M. UntersuchungenüberBau und Entwicklung der Trichonymphiden (Trichonymphahertwigi n. sp.) Festschrift SechzigstenGeburtstag Richard Hertwigs. 1910;1:351–396.
Grassi B, Foà A. Intornoaiprotozoideitermitidi. Rend. R. Accad. Lincei, ser. 5, sem. 1911;112:725–741.
Saldarriaga JF, et al. Morphology and molecular phylogeny of Pseudotrichonymphahertwigi and Pseudotrichonymphapaulistana (Trichonymphea, Parabasalia) from Neotropical Rhinotermitids. J. Eukaryot. Microbiol. 2011;58:487–496. doi: 10.1111/j.1550-7408.2011.00575.x. PubMed DOI
Noda S, et al. Cospeciation in the triplex symbiosis of termite gut protists (Pseudotrichonympha spp.), their hosts, and their bacterial endosymbiosis. Mol. Ecol. 2007;16:1257–1266. doi: 10.1111/j.1365-294X.2006.03219.x. PubMed DOI
Dunkerley JS. A new structure in the flagellate Pseudotrichonymphasphaerophora sp. n. Parasitology1. 1923;5:211–212. doi: 10.1017/S0031182000014670. DOI
Yamin MA. Flagellates of the orders Trichomonadida Kirby, OxymonadidaGrassé, and HypermastigidaGrassi&Foàreported from lower termites (Isoptera families Mastotermitidae, Kalotermitidae, Hodotermitidae, Termopsidae, Rhinotermitidae, and Serritermitidae) and from the wood-feeding roach Cryptocercus (Dictyoptera: Cryptocercidae) Sociobiology. 1979;4:5–119.
James ER, Okamoto N, Burki F, Scheffrahn RH, Keeling PJ. Cthulhu macrofasciculumque n. g., n. sp. and Cthyllamicrofasciculumque n. g., n. sp., a newly identified lineage of parabasalian termite symbionts. PLoS ONE. 2013;8:e58509. doi: 10.1371/journal.pone.0058509. PubMed DOI PMC
Cleveland LR. Symbiosis between termites and their intestinal protozoa. Proc. Natl. Acad. Sci. USA. 1923;9:424–428. doi: 10.1073/pnas.9.12.424. PubMed DOI PMC
Mannesmann RVU. den Einflußder Temperatur auf die Darmsymbionten von Termiten und über die regulatorischenMechanismen der SymbioseTeil 1. Zeitschrift fur angewandteZoologie. 1969;56:385–440.
Grassi B. FlagellativiventineiTermiti. Rend. R. Accad. Lincei, ser. 1917;512:331–394.
Holmgren N. Termitenstudien. 2. Systematik der Termiten: die FamilienMastotermitidae, Protermitidae und Mesotermitidae. K. SvenskaVetensk. Akad. Handl. 1911;46:1–88.
Snyder TE. Catalog of the termites (Isoptera) of the world. Smithson. Misc. Collect. 1949;112:1–490.
Simon C, et al. Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Annals of the Entomological Society of America. 1994;87:651–701. doi: 10.1093/aesa/87.6.651. DOI
Kambhampati S, Smith PT. PCR primers for the amplification of four insect mitochondrial gene fragments. Insect Mol. Biol. 1995;4:233–236. doi: 10.1111/j.1365-2583.1995.tb00028.x. PubMed DOI
Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 2013;30:772–780. doi: 10.1093/molbev/mst010. PubMed DOI PMC
Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics. 2009;25:1972–1973. doi: 10.1093/bioinformatics/btp348. PubMed DOI PMC
Stamatakis A. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30:1312–1313. doi: 10.1093/bioinformatics/btu033. PubMed DOI PMC
Tai V, et al. The role of host phylogeny varies in shaping microbial diversity in the hindguts of lower termites. Appl. Env. Microbiol. 2015;81:1059–1070. doi: 10.1128/AEM.02945-14. PubMed DOI PMC
Trager W. The cultivation of a cellulose-digesting flagellate, Trichomonas termopsidis, and of certain other termite protozoa. Biol. Bull. 1934;66:182–190. doi: 10.2307/1537331. DOI