Borrelia miyamotoi and Borrelia burgdorferi sensu lato widespread in urban areas of the Czech Republic
Language English Country England, Great Britain Media electronic
Document type Journal Article
Grant support
LUC23151
Ministry of Education Youth and Sports of the Czech Republic
LUC23151
Ministry of Education Youth and Sports of the Czech Republic
PubMed
39695826
PubMed Central
PMC11657574
DOI
10.1186/s13071-024-06549-2
PII: 10.1186/s13071-024-06549-2
Knihovny.cz E-resources
- Keywords
- Ixodes ricinus, Estimated prevalence, Geostatistical analysis, Minimum infection rate, Ordinary kriging, Relapsing fever, Risk maps,
- MeSH
- Borrelia burgdorferi Group isolation & purification genetics MeSH
- Borrelia burgdorferi isolation & purification genetics MeSH
- Borrelia * isolation & purification genetics MeSH
- Ixodes * microbiology MeSH
- Humans MeSH
- Lyme Disease epidemiology microbiology transmission MeSH
- Nymph * microbiology MeSH
- Prevalence MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Male MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Geographicals
- Czech Republic epidemiology MeSH
BACKGROUND: Borrelia miyamotoi and Borrelia burgdorferi sensu lato (s.l.) are important zoonotic agents transmitted by Ixodes ricinus ticks, which are widely distributed across Central Europe. Understanding the spatial distribution of these pathogens' prevalence will help identify areas with increased infection risk and facilitate the implementation of effective preventive measures. METHODS: We analysed 12,955 I. ricinus ticks collected from 142 towns in the Czech Republic between 2016 and 2018. The ticks were pooled into 2591 groups of five and tested using duplex quantitative polymerase chain reaction (qPCR) for the presence of B. burgdorferi s.l. and B. miyamotoi. For each location, we estimated the overall prevalence of both agents using the EpiTools Epidemiological Calculator for pooled samples and calculated the minimum infection rate (MIR). To assess the potential risk of infection, we combined data on the abundance of nymphs and females with pathogen prevalence at each sampled site. Using a geographic information system (GIS), we mapped the MIR and infection risk of both Borrelia species across all 142 sampled locations and employed a geostatistical method (ordinary kriging) to predict MIR values and infection risk as continuous surfaces across the entire country. RESULTS: We detected B. miyamotoi in 110 localities and B. burgdorferi s.l. in all 142 localities. The estimated prevalence of B. miyamotoi and B. burgdorferi s.l. in the collected ticks was 2.1% (95% confidence interval [CI] 1.8-2.3) and 27.1% (95% CI 26.0-28.3), respectively. For B. miyamotoi, we identified previously unknown, geographically distinct hotspots of MIR up to 8.3%, with MIR slightly higher in females (2.3%) than in males (1.9%) and nymphs (1.8%), though the difference was not statistically significant. In contrast, B. burgdorferi s.l. exhibited ubiquitous presence, with consistently high prevalence nationwide, showing similar MIRs in females (16.2%) and males (16.1%), and slightly lower in nymphs (15.6%). The highest infection risk for B. miyamotoi was 12.4 infected vectors per hour in southeastern Moravia, while the highest risk for B. burgdorferi s.l. reached 78.6 infected vectors per hour in the Bohemian-Moravian Highlands. CONCLUSIONS: Borrelia miyamotoi is widespread, forming distinct high-prevalence areas in certain regions. Borrelia burgdorferi s.l. demonstrates consistently high prevalence across most of the country, except for a few localized areas such as southwestern Czechia. Both pathogens exhibit natural nidality, forming regions with elevated prevalence and infection risk. Long-term time-series data are needed to confirm the spatio-temporal stability of these hotspots.
See more in PubMed
Crowder CD, Carolan HE, Rounds MA, Honig V, Mothes B, Haag H, et al. Prevalence of Borrelia miyamotoi in Ixodes ticks in Europe and the United States. Emerg Infect Dis. 2014;20:1678–82. 10.3201/eid2010.131583. PubMed PMC
Cutler S, Vayssier-Taussat M, Estrada-Pena A, Potkonjak A, Mihalca AD, Zeller H. A new Borrelia on the block: Borrelia miyamotoi—a human health risk? Euro Surveill. 2019;24(18):1800170. 10.2807/1560-7917.ES.2019.24.18.1800170. PubMed PMC
Scoles GA, Papero M, Beati L, Fish D. A relapsing fever group spirochete transmitted by Ixodes scapularis ticks. Vector Borne Zoonotic Dis. 2001;1:21–34. 10.1089/153036601750137624. PubMed
Cleveland DW, Anderson CC, Brissette CA. Borrelia miyamotoi: a comprehensive review. Pathogens. 2023;12(2):267. 10.3390/pathogens12020267. https://mdpi-res.com/d_attachment/pathogens/pathogens-12-00267/article_deploy/pathogens-12-00267.pdf?version=1675742855. PubMed PMC
Taylor KR, Takano A, Konnai S, Shimozuru M, Kawabata H, Tsubota T. Borrelia miyamotoi infections among wild rodents show age and month independence and correlation with Ixodes persulcatus larval attachment in Hokkaido, Japan. Vector Borne Zoonotic Dis. 2013;13:92–7. 10.1089/vbz.2012.1027. PubMed
Platonov AE, Karan LS, Kolyasnikova NM, Makhneva NA, Toporkova MG, Maleev VV, et al. Humans infected with relapsing fever spirochete Borrelia miyamotoi, Russia. Emerg Infect Dis. 2011;17:1816–23. 10.3201/eid1710.101474. PubMed PMC
Gugliotta JL, Goethert HK, Berardi VP, Telford SR 3rd. Meningoencephalitis from Borrelia miyamotoi in an immunocompromised patient. N Engl J Med. 2013;368:240–5. 10.1056/NEJMoa1209039. PubMed PMC
Estrada-Pena A, Ortega C, Sanchez N, Desimone L, Sudre B, Suk JE, et al. Correlation of Borrelia burgdorferi sensu lato prevalence in questing Ixodes ricinus ticks with specific abiotic traits in the Western Palearctic. Appl Environ Microbiol. 2011;77:3838–45. 10.1128/AEM.00067-11. PubMed PMC
Eisen L. Vector competence studies with hard ticks and Borrelia burgdorferi sensu lato spirochetes: a review. Ticks Tick Borne Dis. 2020;11:101359. 10.1016/j.ttbdis.2019.101359. PubMed PMC
van Duijvendijk G, Coipan C, Wagemakers A, Fonville M, Ersoz J, Oei A, et al. Larvae of Ixodes ricinus transmit Borrelia afzelii and B. miyamotoi to vertebrate hosts. Parasit Vectors. 2016;9:97. 10.1186/s13071-016-1389-5. PubMed PMC
Mysterud A, Stigum VM, Jaarsma RI, Sprong H. Genospecies of Borrelia burgdorferi sensu lato detected in 16 mammal species and questing ticks from northern Europe. Sci Rep. 2019;9:5088. 10.1038/s41598-019-41686-0. PubMed PMC
Wolcott KA, Margos G, Fingerle V, Becker NS. Host association of Borrelia burgdorferi sensu lato: a review. Ticks Tick Borne Dis. 2021;12:101766. 10.1016/j.ttbdis.2021.101766. PubMed
Steere AC. Lyme disease. N Engl J Med. 1989;321:586–96. 10.1056/NEJM198908313210906. PubMed
Vaclavik T, Balazova A, Balaz V, Tkadlec E, Schichor M, Zechmeisterova K, et al. Landscape epidemiology of neglected tick-borne pathogens in central Europe. Transbound Emerg Dis. 2021;68:1685–96. 10.1111/tbed.13845. PubMed
Nosek J, Sixl W. Central-European ticks (Ixodea). Key for determination. Mitt. Abt. Zool. Landesmus. Joanneum. 1972;1:61–92.
Barbour AG, Bunikis J, Travinsky B, Hoen AG, Diuk-Wasser MA, Fish D, et al. Niche partitioning of Borrelia burgdorferi and Borrelia miyamotoi in the same tick vector and mammalian reservoir species. Am J Trop Med Hyg. 2009;81:1120–31. 10.4269/ajtmh.2009.09-0208. PubMed PMC
Balazova A, Noskova E, Siroky P, Durrant C, Balaz V. Diversity and dynamics of zoonotic pathogens within a local community of small mammals. Biologia. 2021;76:3267–73.
Sergeant ESG: Epitools Epidemiological Calculators. Ausvet. http://epitools.ausvet.com.au (2018).
Cowling DW, Gardner IA, Johnson WO. Comparison of methods for estimation of individual-level prevalence based on pooled samples. Prev Vet Med. 1999;39:211–25. 10.1016/s0167-5877(98)00131-7. PubMed
Wackernagel H. Multivariate geostatistics: An introduction with applications. Springer-Verlag Berlin Heidelberg; 2003. Pp. XV, 388. 10.1007/978-3-662-05294-5.
Hoornstra D, Azagi T, van Eck JA, Wagemakers A, Koetsveld J, Spijker R, et al. Prevalence and clinical manifestation of Borrelia miyamotoi in Ixodes ticks and humans in the northern hemisphere: a systematic review and meta-analysis. Lancet Microbe. 2022;3:e772–86. 10.1016/S2666-5247(22)00157-4. PubMed
Honig V, Carolan HE, Vavruskova Z, Massire C, Mosel MR, Crowder CD, et al. Broad-range survey of vector-borne pathogens and tick host identification of Ixodes ricinus from Southern Czech Republic. Fems Microbiol Ecol. 2017;93(11):fix129. 10.1093/femsec/fix129. PubMed PMC
Kubiak K, Szczotko M, Dmitryjuk M. Borrelia miyamotoi-An emerging human tick-borne pathogen in Europe. Microorganisms. 2021;9(1):154. 10.3390/microorganisms9010154. PubMed PMC
Kybicova K, Bastova K, Maly M. Detection of Borrelia burgdorferi sensu lato and Anaplasma phagocytophilum in questing ticks Ixodes ricinus from the Czech Republic. Ticks Tick Borne Dis. 2017;8:483–7. PubMed
Richtrova E, Michalova P, Lukavska A, Navratil J, Kybicova K. Borrelia burgdorferi sensu lato infection in Ixodes ricinus ticks in urban green areas in Prague. Ticks Tick Borne Dis. 2022;13:102053. 10.1016/j.ttbdis.2022.102053. PubMed
Kriz B, Maly M, Balatova P, Kodym P, Kurzova Z, Daniel M, et al. A serological study of antibodies to Anaplasma phagocytophilum and Borrelia burgdorferi sensu lato in the sera of healthy individuals collected two decades apart. Acta Parasitol. 2018;63:33–9. 10.1515/ap-2018-0004. PubMed