Functional Morphology of the Thorax of the Click Beetle Campsosternus auratus (Coleoptera, Elateridae), with an Emphasis on Its Jumping Mechanism

. 2022 Feb 28 ; 13 (3) : . [epub] 20220228

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35323546

Grantová podpora
31802004 National Natural Science Foundation of China
6020271010K Post-doctoral Later-stage Foundation Project of Shenzhen Polytechnic
2021xjkk0605 the Third Xinjiang Scientific Expedition Program
2020GDASYL-20200102021 the GDAS Special Project of Science and Technology Development
2020GDASYL-20200301003 the GDAS Special Project of Science and Technology Development

We investigated and described the thoracic structures, jumping mechanism, and promesothoracic interlocking mechanism of the click beetle Campsosternus auratus (Drury) (Elateridae: Dendrometrinae). Two experiments were conducted to reveal the critical muscles and sclerites involved in the jumping mechanism. They showed that M2 and M4 are essential clicking-related muscles. The prosternal process, the prosternal rest of the mesoventrite, the mesoventral cavity, the base of the elytra, and the posterodorsal evagination of the pronotum are critical clicking-related sclerites. The destruction of any of these muscles and sclerites resulted in the loss of normal clicking and jumping ability. The mesonotum was identified as a highly specialized saddle-shaped biological spring that can store elastic energy and release it abruptly. During the jumping process of C. auratus, M2 contracts to establish and latch the clicking system, and M4 contracts to generate energy. The specialized thoracic biological springs (e.g., the prosternum and mesonotum) and elastic cuticles store and abruptly release the colossal energy, which explosively raises the beetle body in a few milliseconds. The specialized trigger muscle for the release of the clicking was not found; our study supports the theory that the triggering of the clicking is due to the building-up of tension (i.e., elastic energy) in the system.

Zobrazit více v PubMed

Bennet-Clark H.C., Lucey E.C.A. The jump of the flea: A study of the energetics and a model of the mechanism. J. Exp. Biol. 1967;47:59–76. doi: 10.1242/jeb.47.1.59. PubMed DOI

Sutton G.P., Burrows M. Biomechanics of jumping in the flea. J. Exp. Biol. 2011;214:836–847. doi: 10.1242/jeb.052399. PubMed DOI

Heitler W.J. The locust jump. J. Comp. Physiol. 1974;89:93–104. doi: 10.1007/BF00696166. DOI

Bennet-Clark H.C. The energetics of the jump of the locust Schistocerca gregaria. J. Exp. Biol. 1975;63:53–83. doi: 10.1242/jeb.63.1.53. PubMed DOI

Wan C., Hao Z., Feng X. Structures, properties, and energy-storage mechanisms of the semi-lunar process cuticles in locusts. Sci. Rep. 2016;6:35219. doi: 10.1038/srep35219. PubMed DOI PMC

Bonsignori G., Stefanini C., Scarfogliero U., Mintchev S., Benelli G., Dario P. The green leafhopper, Cicadella viridis (Hemiptera, Auchenorrhyncha, Cicadellidae), jumps with near-constant acceleration. J. Exp. Biol. 2013;216:1270–1279. doi: 10.1242/jeb.076083. PubMed DOI

Burrows M., Ghosh A., Sutton G.P., Yeshwanth H.M., Rogers S.M., Sane S.P. Jumping in lantern bugs (Hemiptera, Fulgoridae) J. Exp. Biol. 2021;224:jeb243361. doi: 10.1242/jeb.243361. PubMed DOI PMC

Nadein K., Betz O. Jumping mechanisms and performance in beetles. I. Flea beetles (Coleoptera: Chrysomelidae: Alticini) J. Exp. Biol. 2016;219:2015–2027. doi: 10.1242/jeb.140533. PubMed DOI

Nadein K., Betz O. Jumping mechanisms and performance in beetles. II. Weevils (Coleoptera: Curculionidae: Rhamphini) Arthropod Struct. Dev. 2018;47:131–143. doi: 10.1016/j.asd.2018.02.006. PubMed DOI

Ruan Y., Konstantinov A.S., Shi G., Tao Y., Li Y., Johnson A.J., Luo X., Zhang X., Zhang M., Wu J., et al. The mechanical mechanism of the flea beetle jump, its application to bionics and preliminary design for a robotic jumping leg. ZooKeys. 2020;915:87–105. doi: 10.3897/zookeys.915.38348. PubMed DOI PMC

Muona J., Chang H., Ren D. The clicking Elateroidea from Chinese Mesozoic deposits (Insecta, Coleoptera) Insects. 2020;11:875. doi: 10.3390/insects11120875. PubMed DOI PMC

Kundrata R., Packova G., Prosvirov A.S., Hoffmannova J. The fossil record of Elateridae (Coleoptera: Elateroidea): Described species, current problems and future prospects. Insects. 2021;12:286. doi: 10.3390/insects12040286. PubMed DOI PMC

Evans M.E.G. The jump of the click beetle (Coleoptera, Elateridae)—A preliminary study. J. Zool. 1972;167:319–336. doi: 10.1111/j.1469-7998.1972.tb03115.x. DOI

Binaghi G. Sulla meccanica del salto degli Elateridi. Boll. Soc. Ent. Ital. 1942;74:1–6.

d’Aguilar J. Recherches sur l’thologie des imagos d’Agriotes (Col. Elateridae) Annals Ểpiphyt. 1961;11:1–95.

Larsén O. On the morphology and function of locomotor organs of the Gyrinidae and other Coleoptera. Opusc. Entomol. 1966;30:1–241.

Evans M.E.G. The jump of the click beetle (Coleoptera: Elateridae)—Energetics and mechanics. J. Zool. 1973;169:181–194. doi: 10.1111/j.1469-7998.1973.tb04553.x. DOI

Ribak G., Weihs D. Jumping without using legs: The jump of the click-beetles (Elateridae) is morphologically constrained. PLoS ONE. 2011;6:e20871. doi: 10.1371/journal.pone.0020871. PubMed DOI PMC

Ribak G., Mordechay O., Weihs D. Why are there no long distance jumpers among click-beetles (Elateridae)? Bioinspir. Biomim. 2013;8:036004. doi: 10.1088/1748-3182/8/3/036004. PubMed DOI

Ribak G., Reingold S., Weihs D. The effect of natural substrates on jump height in click-beetles. Funct. Ecol. 2012;26:493–499. doi: 10.1111/j.1365-2435.2011.01943.x. DOI

Bolmin O., Duan C., Urrutia L., Abdulla A.M., Hazel A.M., Alleyne M., Dunn A.C., Wissa A. Pop! Observing and modeling the legless self-righting jumping mechanism of click beetles. In: Mangan M., Cutkosky M., Mura A., Verschure P.F.M.J., Prescott T., Lepora N., editors. Living Machines. Springer; Cham, Switzerland: 2017. pp. 35–47.

Bolmin O., Wei L., Hazel A.M., Dunn A.C., Wissa A., Alleyne M. Latching of the click beetle (Coleoptera: Elateridae) thoracic hinge enabled by the morphology and mechanics of conformal structures. J. Exp. Biol. 2019;222:jeb196683. doi: 10.1242/jeb.196683. PubMed DOI

Bolmin O., Socha J.J., Alleyne M., Dunn A.C., Fezzaa K., Wissa A. Nonlinear elasticity and damping govern ultrafast dynamics in click beetles. Proc. Natl. Acad. Sci. USA. 2021;118:1–8. doi: 10.1073/pnas.2014569118. PubMed DOI PMC

Fukushima A., Kawaguchi Y. Click beetle-like jumping device for entertainment; Proceedings of the SIGGRAPH Asia 2014 Emerging Technologies; Shenzhen, China. 3–6 December 2014; pp. 1–3. DOI

Chen G., Tu J., Ti X., Hu H. A single-legged robot inspired by the jumping mechanism of click beetles and its hopping dynamics analysis. J. Bionic. Eng. 2020;17:1–17. doi: 10.1007/s42235-020-0099-z. DOI

Cate P.C., Sánchez-Ruiz A., Löbl I., Smetana A. Elateridae. In: Löbl I., Smetana A., editors. Catalogue of Palaearctic Coleoptera. Volume 4. Apollo Books; Stenstrup, Denmark: 2007. pp. 89–209.

Kundrata R., Gunter N.L., Janosikova D., Bocak L. Molecular evidence for the subfamilial status of Tetralobinae (Coleoptera: Elateridae), with comments on parallel evolution of some phenotypic characters. Arthropod Syst. Phylogeny. 2018;76:137–145.

Douglas H.B., Kundrata R., Brunke A.J., Escalona H.E., Chapados J.T., Eyres J., Richter R., Savard K., Ślipiński A., McKenna D., et al. Anchored phylogenomics, evolution and systematics of Elateridae: Are all bioluminescent Elateroidea derived click beetles? Biology. 2021;10:451. doi: 10.3390/biology10060451. PubMed DOI PMC

Matsuda R. Morphology and evolution of the insect thorax. Mem. Entomol. Soc. Can. 1970;102:5–431. doi: 10.4039/entm10276fv. DOI

Verhoeff K.W. Zur vergleichenden Morphologie des Abdomens der Coleopteren und über die phylogenetische Bedeutung desselben, zugleich ein zusammenfassender kritischer Rückblick und neuer Beitrag. Z. Wiss. Zool. 1918;117:130–204.

Horst A. Zur Kenntnis der Biologie und Morphologie einiger Elateriden und ihrer Larven. Arch. Nat. 1922;88:1–90.

Douglas H.B. Revision of Cardiophorus (Coleoptera: Elateridae) species of eastern Canada and United States of America. Can. Entomol. 2003;135:493–548. doi: 10.4039/n02-003. DOI

Šípek P., Fabrizi S., Eberle J., Ahrens D. A molecular phylogeny of rose chafers (Coleoptera: Scarabaeidae: Cetoniinae) reveals a complex and concerted morphological evolution related to their flight mode. Mol. Phylogenet. Evol. 2016;101:163–175. doi: 10.1016/j.ympev.2016.05.012. PubMed DOI

Sugimoto M., Ogawa N., Yoshizawa K. Morphology of the elytral base sclerites. Arthropod Struct. Dev. 2018;47:423–429. doi: 10.1016/j.asd.2018.02.004. PubMed DOI

Kukalová-Peck J., Lawrence J.F. Relationship among coleopteran suborders and major endoneopteran lineages: Evidence from hind wing characters. Eur. J. Entomol. 2004;101:95–144. doi: 10.14411/eje.2004.018. DOI

Lawrence J.F., Beutel R.G., Leschen R.A.B., Ślipiński A. Glossary of morphological terms. In: Beutel R.G., Lawrence J.F., Leschen R.A.B., editors. Handbook of Zoology—Arthropoda: Insecta—Coleoptera, Beetles. Volume 2. De Gruyter; Berlin, Germany: 2010. pp. 9–20.

Gurjeva E.L. Stroenie grudnogo otdela zhukov-shchelkunov (Coleoptera, Elateridae) I znachenie ego priznakov dlya sistemy semeistva [Thoracic structure of click beetles (Coleoptera, Elateridae) and the significance of the structural characters for the system of the family] Ent. Obozr. 1974;53:96–113. (In Russian)

Friedrich F., Beutel R.G. The pterothoracic skeletomuscular system of Scirtoidea (Coleoptera: Polyphaga) and its implications for the relationships of the beetle suborders. J. Zool. Syst. Evol. Res. 2006;44:290–315. doi: 10.1111/j.1439-0469.2006.00369.x. DOI

Crowson R.A. The Natural Classification of the Families of Coleoptera. EW. Classey Ltd.; Middlesex, UK: 1967. p. 214.

Calder A.A. Click Beetles: Genera of the Australian Elateridae (Coleoptera) CSIRO Publishing; Clayton, Australia: 1996. p. 401. Monographs on Invertebrate Taxonomy.

Douglas H.B. Phylogenetic relationships of Elateridae inferred from adult morphology, with special reference to the position of Cardiophorinae. Zootaxa. 2011;2900:1–45. doi: 10.11646/zootaxa.2900.1.1. DOI

Douglas H.B. World reclassification of the Cardiophorinae (Coleoptera, Elateridae), based on phylogenetic analyses of morphological characters. ZooKeys. 2017;655:1–130. doi: 10.3897/zookeys.655.11894. PubMed DOI PMC

Baehr M. Zur Funktionsmorphologie und evolutiven Bedeutung der elytralen Sperrmechanismen der Scaritini (Coleoptera: Carabidae) Entomol. Gen. 1980;6:311–333.

Friedrich F., Beutel R.G. The thorax of Zorotypus (Hexapoda, Zoraptera) and a new nomenclature for the musculature of Neoptera. Arthropod Struct. Dev. 2008;37:29–54. doi: 10.1016/j.asd.2007.04.003. PubMed DOI

Belkaceme T. Skelet und Muskulatur des Kopfes und Thorax von Noterus laevis Sturm. Ein Beitrag zur Morphologie und Phylogenie der Noteridae (Coleoptera: Adephaga) Stuttg. Beitr. Naturk. 1991;462:1–94.

Lawrence J.F., Ślipiński A., Seago A.E., Thayer M.K., Newton A.F., Marvaldi A.E. Phylogeny of the Coleoptera based on morphological characters of adults and larvae. Ann. Zool. 2011;61:1–217. doi: 10.3161/000345411X576725. DOI

Jordan A., Broad G.R., Stigenberg J., Hughes J., Stone J., Bedford I., Penfield S., Wells R. The potential of the solitary parasitoid Microctonus brassicae for the biological control of the adult cabbage stem flea beetle Psylliodes chrysocephala. Entomol. Exp. Appl. 2020;168:360–370. doi: 10.1111/eea.12910. PubMed DOI PMC

Patek S.N., Korff W.L., Caldwell R.L. Biomechanics: Deadly strike mechanism of a mantis shrimp. Nature. 2004;428:819–820. doi: 10.1038/428819a. PubMed DOI

Patek S.N., Rosario M.V., Taylor J.R. Comparative spring mechanics in mantis shrimp. J. Exp. Biol. 2013;216:1317–1329. doi: 10.1242/jeb.078998. PubMed DOI

Tadayon M., Amini S., Wang Z.A., Miserez A. Biomechanical design of the mantis shrimp saddle: A biomineralized spring used for rapid raptorial strikes. iScience. 2018;8:271–282. doi: 10.1016/j.isci.2018.08.022. PubMed DOI PMC

Potter J. Woodpeckers and head injury. Lancet. 1976;307:640. doi: 10.1016/S0140-6736(76)90441-4. DOI

May P.R., Fuster J.M., Haber J., Hirschman A. Woodpecker drilling behavior: An endorsement of the rotational theory of impact brain injury. Arch. Neurol. 1979;36:370–373. doi: 10.1001/archneur.1979.00500420080011. PubMed DOI

Wang L., Cheung J.T.M., Pu F., Li D., Zhang M., Fan Y. Why do woodpeckers resist head impact injury: A biomechanical investigation. PLoS ONE. 2011;6:e26490. doi: 10.1371/journal.pone.0026490. PubMed DOI PMC

Kundrata R., Bocak L. The phylogeny and limits of Elateridae (Insecta, Coleoptera): Is there a common tendency of click beetles to soft-bodiedness and neoteny? Zool. Scr. 2011;40:364–378. doi: 10.1111/j.1463-6409.2011.00476.x. DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Click beetle larvae from Cretaceous Burmese amber represent an ancient Gondwanan lineage

. 2025 Jan 07 ; 15 (1) : 1125. [epub] 20250107

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...