If Dung Beetles (Scarabaeidae: Scarabaeinae) Arose in Association with Dinosaurs, Did They Also Suffer a Mass Co-Extinction at the K-Pg Boundary?
Language English Country United States Media electronic-ecollection
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
27145126
PubMed Central
PMC4856399
DOI
10.1371/journal.pone.0153570
PII: PONE-D-15-54970
Knihovny.cz E-resources
- MeSH
- Biodiversity MeSH
- Biological Evolution * MeSH
- Coleoptera * MeSH
- Dinosaurs * MeSH
- Ecology MeSH
- Extinction, Biological * MeSH
- Feces MeSH
- Phylogeny MeSH
- Magnoliopsida MeSH
- Sequence Analysis, DNA MeSH
- Fossils MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
The evolutionary success of beetles and numerous other terrestrial insects is generally attributed to co-radiation with flowering plants but most studies have focused on herbivorous or pollinating insects. Non-herbivores represent a significant proportion of beetle diversity yet potential factors that influence their diversification have been largely unexamined. In the present study, we examine the factors driving diversification within the Scarabaeidae, a speciose beetle family with a range of both herbivorous and non-herbivorous ecologies. In particular, it has been long debated whether the key event in the evolution of dung beetles (Scarabaeidae: Scarabaeinae) was an adaptation to feeding on dinosaur or mammalian dung. Here we present molecular evidence to show that the origin of dung beetles occurred in the middle of the Cretaceous, likely in association with dinosaur dung, but more surprisingly the timing is consistent with the rise of the angiosperms. We hypothesize that the switch in dinosaur diet to incorporate more nutritious and less fibrous angiosperm foliage provided a palatable dung source that ultimately created a new niche for diversification. Given the well-accepted mass extinction of non-avian dinosaurs at the Cretaceous-Paleogene boundary, we examine a potential co-extinction of dung beetles due to the loss of an important evolutionary resource, i.e., dinosaur dung. The biogeography of dung beetles is also examined to explore the previously proposed "out of Africa" hypothesis. Given the inferred age of Scarabaeinae as originating in the Lower Cretaceous, the major radiation of dung feeders prior to the Cenomanian, and the early divergence of both African and Gondwanan lineages, we hypothesise that that faunal exchange between Africa and Gondwanaland occurred during the earliest evolution of the Scarabaeinae. Therefore we propose that both Gondwanan vicariance and dispersal of African lineages is responsible for present day distribution of scarabaeine dung beetles and provide examples.
See more in PubMed
Farrell BD, Mitter C. Adaptive radiation in insects and plants: time and opportunity. Amer. Zool. 1994; 34: 57–69. 10.1093/icb/34.1.57 DOI
Farrell BD. “Inordinate fondness” explained: Why are there so many beetles? Science 1998; 281: 555–559. PubMed
Moreau CS, Bell CD, Vila R, Archibald SB, Pierce NE. Phylogeny of the Ants: Diversification in the Age of Angiosperms. Science 2006; 312: 101–104. 10.1126/science.1124891 PubMed DOI
Hu S, Dilcher DL, Jarzen DM, Winship Taylor D. Early steps of angiosperm-pollinator coevolution. PNAS. 2008; 105: 240–245. 10.1073/pnas.0707989105 PubMed DOI PMC
McKenna DD, Sequeira AS, Marvaldi AE,Farrell BD. Temporal lags and overlap in the diversification of weevils and flowering plants. PNAS. 2009; 106: 7083–7088. 10.1073/pnas.0810618106 PubMed DOI PMC
Cardinal S, Danforth BN. Bees diversified in the age of eudicots. Proc. Roy. Soc. B. 2013; 280: 2012–2686. 10.1098/rspb.2012.2686 PubMed DOI PMC
Chapman AD. Number of Living Species in Australia and the World. Report for the Australian Biological Resources Study, Canberra, Australia. September; 2009.
Hunt T, Bergsten J, Levkanicova Z, Papadopoulou A, John OS, Wild R, et al. A comprehensive phylogeny of beetles reveals the evolutionary origins of a superradiation. Science 2007; 318: 1913 10.1126/science.1146954 PubMed DOI
McKenna DD, Farrell BD, Caterino MS, Farnum CW, Hawks DC, Maddison DR, et al. Phylogeny and evolution of the Staphyliniformia and Scarabaeiformia: Forest litter as a stepping-stone for diversification of non-phytophagous beetles. Syst. Entomol. 2015; 40: 35–60. 10.1111/syen.12093 DOI
Scholtz CH, Grebennikov VV. In Handbook of Zoology Vol. IV, Arthropoda, Part II, Insecta Kristensen NP, Beutel RG. Eds. Coleoptera Vol 1, Chap 12. Walter De Gruyter, Berlin: (2005).
Ahrens D. Scott M, Vogler AP. The phylogeny of monkey beetles based on mitochondrial and ribosomal RNA genes (Coleoptera: Scarabaeidae: Hopliini). Mol. Phylogenet. Evol. 2011, 60: 408–415. 10.1016/j.ympev.2011.04.011 PubMed DOI
Halffter G, Matthews EG. The natural history of dung beetles of the family Scarabaeinae (Coleoptera, Scarabaeidae). Folia Entomologica Mexicana 12/14:1–312.
Bai M, Ahrens D, Yang XK, Ren D. New fossil evidence of the early diversification of scarabs: DOI
Ren D, Gao KQ, Guo ZG, Tan JJ, Song Z. Stratigraphic division of the Jurassic in the Daohugou area, Ningcheng, Inner Mongolia. Geological Bulletin of China, 2002; 21: 584–591.
Gao K-Q, Ren D. Radiometric Dating of Ignimbrite from Inner Mongolia Provides no Indication of a Post-Middle Jurassic Age for the Daohugou Beds. Acta Geologica Sinica (English Edition) 2006; 80: 42–45. 10.1111/j.1755-6724.2006.tb00793.x DOI
Ren D, Shih CK, Gao TP, Yao YZ, Zhao YY. Silent Stories—Insect Fossil Treasures from Dinosaur Era of the Northeastern China. Science Press, Beijing, 324 pp; 2010
Shi CF, Yang Q, Ren D. Two new fossil lacewing species from the Middle Jurassic of Inner Mongolia, China (Neuroptera: Grammolingiidae). Acta Geologica Sinica (English Edition) 2011; 85: 482–489. 10.1111/j.1755-6724.2011.00416.x DOI
Ahrens D, Schwarzer J, Vogler AP. The evolution of scarab beetles tracks the sequential rise of angiosperms and mammals. Proc. R. Soc. B. 2014; 281, 20141470 10.1098/rspb.2014.1470 PubMed DOI PMC
Kim SI, Farrell BD. Phylogeny of world stag beetles (Coleoptera: Lucanidae) reveals a Gondwanan origin of Darwin's stag beetle. Mol. Phylogenet. Evol. 2015; 86: 35–48. 10.1016/j.ympev.2015.02.015 PubMed DOI
McKenna DD, Wild AL, Kanda K, Bellamy CL, Beutel RG, Caterino MS, et al. The beetle tree of life reveals that Coleoptera survived end-Permian mass extinction to diversify during the Cretaceous terrestrial revolution. Syst. Entomol. 2015; 40: 835–880, 10.1111/syen.12132 DOI
Bouchard P, Bousquet Y, Davies AE, Alonso-Zarazaga MA, Lawrence JF, Lyal CHC et al. Family-group names in Coleoptera (Insecta). Zookeys 2011; 88: 1–972. 10.3897/zookeys.88.807 PubMed DOI PMC
Lawrence JF, Ślipiński A. Australian Beetles Vol. 1 Morphology, Classification and Keys. Commonwealth Scientific and Industrial Research Organisation Publishing, Collingwood, Victoria, viii–561 pp. Pg 208 2013.
Gunter NL, Leavengood JM, Bartlett JS, Chapman EG, Cameron SL. A molecular phylogeny of the checkered beetles and a description of Epiclininae a new subfamily (Coleoptera: Cleroidea: Cleridae). Syst. Entomol. 2013; 38: 626–636. 10.1111/syen.12019 DOI
Katoh K, Kuma K, Toh H, Miyata T. MAFFT version 5: improvement in accuracy of multiple sequence alignment. Nucleic Acids Res. 2005; 33: 511–518. 10.1093/nar/gki198 PubMed DOI PMC
Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004; 32: 1792–1797. 10.1093/nar/gkh340 PubMed DOI PMC
Drummond AJ, Ashton B, Buxton S, Cheung M, Cooper A, Duran C et al. Geneious v5.6. 2012. Available via http://www.geneious.com
Lanfear R, Calcott B, Ho SYW, Guindon S. PartitionFinder: Combined Selection of Partitioning Schemes and Substitution Models for Phylogenetic Analyses. Mol. Biol. Evol. 2012; 29: 1695–1701 10.1093/molbev/mss020 PubMed DOI
Huelsenbeck JP, Ronquist F. MRBAYES: Bayesian inference of phylogeny. Bioinformatics. 2001; 17: 754–755. 10.1093/bioinformatics/17.8.754 PubMed DOI
Ronquist F, Huelsenbeck JP. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics. 2003; 19: 1572–1574. 10.1093/bioinformatics/btg180 PubMed DOI
Rambaut A. Drummond A J. Tracer v1.5. 2007. Available via http://beast.bio.ed.ac.uk/Tracer
Stamatakis A. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics. 2006; 22: 2688–2690. 10.1093/bioinformatics/btl446 PubMed DOI
Miller MA, Pfeiffer W, Schwarz T. “Creating the CIPRES Science Gateway for the inference of large phylogenetic trees” in Proceedings of the Gateway Computing Environments Workshop, 14 Nov 2010, New Orleans, LA –1–8.
Krell FT. Fossil record and evolution of Scarabaeoidea (Coleoptera: Polyphaga). Coleopt. Bull. 2006; 60: 120–143.
Krell FT. Catalogue of fossil Scarabaeoidea (Coleoptera: Polyphaga) of the Mesozoic and Tertiary—Version 2007. Denver Museum of Nature & Science Technical Report 2007; 2007–8, 1–79.
Bai M, Ren D, Yang XK. Prophaenognatha, a new aclopines genus from the Yixian Formation, China and its phylogenetic position based on morphological characters (Coleoptera: Scarabaeidae). Acta Geol. Sin-Engl. 2011; 85: 984–993. 10.1111/j.1755-6724.2011.00532.x DOI
Ocampo FC, Mondaca J. Revision of the scarab subfamily Aclopinae Blanchard (Coleoptera: Scarabaeidae) in Argentina and Chile. Zootaxa 2012, 3409: 1–29 X
Sanderson MJ. r8s: inferring absolute rates of molecular evolution and divergence times in the absence of a molecular clock. Bioinformatics 2003; 19: 301–302. PubMed
Drummond AJ, Rambaut A. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol. Biol. 2007; 7: 214 10.1186/1471-2148-7-214 PubMed DOI PMC
Thorne JL, Kishino H, Painter IS. Estimating the Rate of Evolution of the Rate of Molecular Evolution. Mol. Biol. Evol. 1998; 15: 1647–1657. PubMed
Yang Z. PAML 4: Phylogenetic Analysis by Maximum Likelihood. Mol. Biol. Evol. 2007. 24, 1586–1591. 10.1093/molbev/msm088 PubMed DOI
Battistuzzi FU. Fast and slow implementations of relaxed-clock methods show similar patterns of accuracy in estimating divergence times. Mol. Biol. Evol. 2011; 28: 2439–42. 10.1093/molbev/msr100 PubMed DOI PMC
dos Reis Z, Yang M. Neither phylogenomic nor palaeontological data support a Palaeogene origin of placental mammals. Mol. Biol. Evol. 2011; 28: 2161–2172. PubMed PMC
Paradis E, Claude J, Strimmer K. APE: Analyses of Phylogenetics and Evolution in R language. Bioinformatics. 2004; 20: 289–290. PubMed
Rabosky DL. LASER: A Maximum Likelihood Toolkit for Detecting Temporal Shifts in Diversification Rates From Molecular Phylogenies. Evol. Bioinform. 2006; 2: 247–250. PubMed PMC
Harmon LJ, Weir JT, Brock CD, Glor CD, Challenger W. GEIGER: investigating evolutionary radiations. Bioinformatics, 2008. 24: 129–131 PubMed
Stadler T. TreeSim: Simulating trees under the birth-death model. R package version 2.0. http://CRAN.R-project.org/package=TreeSim 2014.
Maddison WP, Maddison DR. Mesquite: a modular system for evolutionary analysis. 2015. Version 3.04. http://mesquiteproject.org
Magallón S, Sanderson MJ. Absolute Diversification Rates In Angiosperm Clades. Evolution. 2001; 55: 1762–1780. PubMed
Höhna S, May MR, Moore BR. TESS: Bayesian inference of lineage diversification rates from (incompletely sampled) molecular phylogenies in R. bioRxiv 2015; 10.1101/021238 DOI
McElwain JC, Punyasena SW. Mass extinction events and the plant fossil record. Trends Ecol. Evol. 2007; 22: 548–557. PubMed
Cascales-Miñana B, Cleal CJ.The plant fossil record reflects just two great extinction events. Terra Nova. 2014; 26: 195–200.
Wills MA. How good is the fossil record of arthropods? Geol. J. 2001; 36: 187–210. 10.1002/gj.882 DOI
Nikolajev GV. New subfamily of stag beetles (Coleoptera: Scarabaeoidea: Lucanidae) from the Mesozoic of Mongolia, and its position in the system of the superfamily. Paleontological Journal 2000; 34, Suppl. 3, S327–S330.
Nikolajev GV. Mezozoiskii Etap Evolyutsii Plastinchatousykh (Insecta: Coleoptera: Scarabaeoidea). Kazak Universiteti, Almaty, 222 pp 2007.
Nikolajev GV, Wang B, Liu Y, Zhang HC. Stag beetles from the Mesozoic of Inner Mongolia, China (Scarabaeoidea: Lucanidae). Acta Palaeontologica Sinica. 2011; 50: 41–47.
Nikolaev GV. On the mesozoic taxa of scarabaeoid beetles of the family Hybosoridae (Coleoptera: Scarabaeoidea). Paleontol. J. 2010; 44: 649–653.
Yan Z, Bai M, Ren D. A new genus and species of fossil Hybosoridae (Coleoptera: Scarabaeoidea) from the Early Cretaceous Yixian Formation of Liaoning, China. Alcheringa: An Australasian Journal of Palaeontology. 2012; 10.1080/03115518.2012.716231 DOI
Nikolaev GV, Wang B, Liu Y, Zhang H. First record of Mesozoic Ceratocanthinae (Coleoptera: Hyborsoridae). Acta Paleontologica Sinica 2010; 49: 443–447.
Ho SYW, Phillips MJ. Accounting for Calibration Uncertainty in Phylogenetic Estimation of Evolutionary Divergence Times. Syst. Biol. 2009; 58: 367–380. 10.1093/sysbio/syp035 PubMed DOI
Nikolajev GV. Vidy plastinchatousykh zhukov gruppy Pleurosticti (Coleoptera, Scarabaeidae) iz nizhnego mela Zabaikaliya. Paleontologicheskii Zhurnal 1998(5): 77–84, pl. 10. [Translation: Nikolajev, GV. Pleurostict Lamellicorn Beetles (Coleoptera, Scarabaeidae) from the Lower Cretaceous of Transbaikalia. Paleontological Journal 1998; 32: 513–521.]1998
Krell FT. The fossil record of Mesozoic and Tertiary Scarabaeoidea (Coleoptera: Polyphaga). Invertebrate Taxonomy. 2000; 14: 871–905.
Nikolajev GV. Novyy rod podsemeystva Aclopinae (Coleoptera, Scarabaeidae) iz verkhney yury Kazakhstana. Trudy Instituta Zoologii, Ministerstvo Obrazovaniia i Nauki Respubliki, Zoologo-ekologicheskie Issledovaniya 2005; 49:112–114.
Tarasov S, Génier F. Innovative Bayesian and Parsimony Phylogeny of Dung Beetles (Coleoptera, Scarabaeidae, Scarabaeinae) Enhanced by Ontology-Based Partitioning of Morphological Characters. PLoS ONE 2015; 10(3): e0116671 10.1371/journal.pone.0116671 PubMed DOI PMC
Bell CD, Soltis DE, Soltis PS. The age and diversification of angiosperms revisited. American Journal of Botany. 2010; 97, 1296–1303. 10.3732/ajb.0900346 PubMed DOI
Smith SA, Beaulieu JM, Donoghue MJ. An uncorrelated relaxed-clock analysis suggests an earlier origin for flowering plants. PNAS. 2010; 107: 5897–5902. 10.1073/pnas.1001225107 PubMed DOI PMC
Zeng L, Zhang Q, Sun R, Kong H, Zhang N. H Ma. Resolution of deep angiosperm phylogeny using conserved nuclear genes and estimates of early divergence times. Nature Communications 2014; 10.1038/ncomms5956 PubMed DOI PMC
Magallón S, Castillo A. Angiosperm diversification through time. American Journal of Botany. 2009; 96: 349–365. 10.3732/ajb.0800060 PubMed DOI
Crepet WL. The fossil record of angiosperms: Requiem or renaissance? Ann. Missouri Bot. Gard. 2008; 95: 3–33.
Gómez-Zurita J, Hunt T, Kopliku F, Vogler AP. Recalibrated Tree of Leaf Beetles (Chrysomelidae) Indicates Independent Diversification of Angiosperms and Their Insect Herbivores. PLoS ONE 2007; 2(4): e360 10.1371/journal.pone.0000360 PubMed DOI PMC
Barrett PM, Willis KJ. Did dinosaurs invent flowers? Dinosaur-angiosperm coevolution revisited. Biol. Rev. 2001; 76: 411–447 10.1017/S1464793101005735 PubMed DOI
Molnar RD, Clifford HT. Gut contents of a small ankylosaur. J. Vert. Paleontol. 2000; 20: 194–196
Chin K, Gill BD. Dinosaurs, dung beetles and conifers: participants in the Cretaceous food web. Palaios 1996;.11: 280–285. 10.2307/3515235 DOI
Scholtz CH, Davis ALV, Kryger U. Evolutionary biology and conservation of dung beetles. Pensoft Publishers, Pretoria; 2009.
Fastovsky DE, Smith JB. In The Dinosauria (2nd Edition). Weishampel DB, Dodson P, Osmólska H eds. University of California Press, Berkeley, p. 614–626; 2004.
Hummel J. In vitro digestibility of fern and gymnosperm foliage: implications for sauropod feeding ecology and diet selection. Proc. Biol. Sci. 2008; 275: 1015–1021. 10.1098/rspb.2007.1728 PubMed DOI PMC
Chin K. The paleobiological implications of herbivorous dinosaur coprolites from the Upper Cretaceous Two Medicine Formation of Montana: why eat wood? Palaios 2007; 22: 554–566. 10.2110/palo.2006.p06-087r DOI
Arillo A, Ortuño VM. Did dinosaurs have any relation with dung-beetles? J. Nat. Hist. 2008; 42: 1405–1408.
Meredith RW, Janečka JE, Gatesy J, Ryder OA, Fisher CA, Teeling EC et al. Impacts of the Cretaceous Terrestrial Revolution and KPg extinction on mammal diversification. Science 2011; 334: 521–524. 10.1126/science.1211028 PubMed DOI
O’Leary MA, Bloch JI, Flynn JJ, Gaudin TJ, Giallombardo A, Giannini NP et al. The Placental Mammal Ancestor and the Post—K-Pg Radiation of Placentals. Science. 2013. 339: 662–667 10.1126/science.1229237 PubMed DOI
Davis ALV, Scholtz CW, Philips TK. Historical biogeography of scarabaeine dung beetles. J. Biogeog. 2002; 29: 1217–1256.
Phillips TK, Pretorius E, Scholtz CW. A phylogenetic analysis of dung beetles (Scarabaeidae: Scarabaeinae): unrolling an evolutionary history. Invertebr. Syst. 2004; 18: 53–88. 10.1071/IS03030 DOI
Cambefort Y. Biogeography and Evolution In “Dung Beetle Ecology”. (Eds. Hanski I, Cambefort Y). pp 51–68. Princeton University Press, Princeton, New Jersey: 1991
Davis ALV. Climatic and biogeographical associations of southern African Dung Beetles. African Journal of Ecology. 1997; 35: 10–38.
Sole CL, Scholtz CH. Did dung beetles arise in Africa? A phylogenetic hypothesis based on five gene regions. Mol. Phylogenet. Evol. 2010; 10.1016/j.ympev.2010.04.023 PubMed DOI
Mlambo S, Sole CL, Scholtz. A molecular phylogeny of the African Scarabaeinae (Coleoptera: Scarabaeidae). Arthropod Systematics and Phylogeny. 2015; 73: 303–321.
Wirta H, Orsini L, Hanski I. An old adaptive radiation of forest dung beetles in Madagascar. Mol. Phylogenet. Evol. 2008; 47:1076–1089. 10.1016/j.ympev.2008.03.010 PubMed DOI
Monaghan MT, Inward DJG, Hunt T, Vogler AP. A molecular phylogenetic analysis of Scarabaeinae (dung beetles). Mol. Phylogenet. Evol. 2007; 44: 436–439. PubMed
Ho SYW. Molecular Clocks In: Encyclopedia of Scientific dating methods. Eds Rink WJ, Thompson JW. Springer-Verlag, Berlin: Pp 583–588. 2015
Pulquero MJF, Nichols RA. Dates from the Molecular clock: how wrong can we be? Trends in Ecology and Evolution. 2007; 22:180–184. PubMed
Thomas JA, Welch JJ, Lanfear R, Bromham L. A generation time effect on the rate of molecular evolution in invertebrates. Molecular Biology and Evolution. 2010; 27: 1173–1180. 10.1093/molbev/msq009 PubMed DOI
Sibuet JC, Hay WW, Prunier A, Montadert L, Hinz K, Fritsch J. Early Evolution of the South Atlantic Ocean: Role of the Rifting Episode In: Intial Reports of Deep Sea Drilling Project. Eds Hay WW, Sibuet JC. US Government printing Office, Washington, pp 469–481. 1983
Torsvik TH, Rousse S, Labails C, Smethurst MA. A new scheme for the opening of the South Atlantic Ocean and the dissection of an Aptian salt basin. Geophys. J. Int. 2009; 177: 1315–1333.
Heine C, Zoethout J, Muller RD. Kinematics of the South Atlantic rift. Solid Earth. 2013; 4: 215–253.
Buffetaut E, Taquet P. An early Cretaceous terrestrial crocodilian and the opening of the South Atlantic. Nature 1979; 280: 486–487.
Buffetaut E. Histoire biogéographique des Sebecosuchia (Crocodylia, Mesosuchia): un essai d'interprétation. Annales de Paléontologie. 1980; 66: 1–18.
Buffetaut E. Die biogeographische Geschichte der Krokodilier, mit Beschreibung einer neuen Art, Araripesuchus wegeneri. Geologische Rundschau. 1981; 70: 611–624.
Buffetaut E. Radiation évolutive, paléoécologie et biogéographie des crocodiliens mésosuchiens. Mémoires de la Société Géologique de, France. 1982; 142: 1–88.
Chatterjee S, Scotese CR. The breakup of Gondwana and the evolution and biogeography of the Indian Plate. Proceedings of Indian Science Academy. 1999; 65: 397–425.
Calvo JO, Salgado L. A land bridge connection between South America and Africa during Albian—Cenomanian times based on sauropod dinosaur evidence In: Congresso Brasileiro de Geologia, 39, Salvador, 1996. Sociedade Brasileira de Geologia—Núcleo Bahia-Sergipe, Anais, pp. 392–393. 1996.
de Wit MJ. Madagascar: Heads its a Continent, tails its an Island. Ann. Rev. Earth Planet Sci. 2003; 31: 213–248.
Yoder AD, Yang Z. Divergence dates for Malagasy lemurs estimated from multiple gene loci: geological and evolutionary context. Mol. Ecol. 2004; 13: 757–773. PubMed
Poux C, Madsen O, Marquard E, Vieites DR, de Jong WW, Vences M. Asynchronous colonization of Madagascar by the four endemic clades of primates, tenrecs, carnivores, and rodents as inferred from nuclear genes. Syst. Biol. 2005; 54: 719–730 PubMed
Pozzi L, Hodgson JA, Burrel AS, Sterner KN, Raaum RL, Disotell TR. Primate phylogenetic relationships and divergence dates inferred from complete mitochondrial genomes. Mol. Phylogenet. Evol. 2014; 75: 165–183. 10.1016/j.ympev.2014.02.023 PubMed DOI PMC
Samonds KE, Godfrey LR, Ali JR, Goodman SM, Vences M, Sutherland MR et al. Spatial and temporal arrival patterns of Madagascar’s vertebrate fauna explained by distance, ocean currents, and ancestor type. PNAS. 2012. 109: 5352–5357. 10.1073/pnas.1113993109 PubMed DOI PMC
Stavert J, Gaskett AC, Scott DJ, Beggs J. Dung beetles in an avian-dominated island ecosystem: feeding and tropic ecology. Oecologia. 176: 259–71 10.1007/s00442-014-3001-z PubMed DOI
Crisp MD, Cook LG. Explosive radiation or cryptic mass extinction? Interpreting signatures in molecular phylogenies. Evolution. 2009; 63: 2257–2265 10.1111/j.1558-5646.2009.00728.x PubMed DOI
Grass Phylogeny Working Group. Phylogeny and subfamilial classification of the grasses (Poaceae). Ann. Missouri Bot. Gard. 2001; 88: 373–457.
Nilsson G. Chapter 8 Madagascar and other Islands
Calaby JH, Lee AK. The rare and endangered rodents of the Australasian region
Larsen TH, Lopera A, Forsyth A, Génier. From coprophagy to predation: a dung beetle that kills millipedes. Biology Letters. 2009; 5: 152–155. 10.1098/rsbl.2008.0654 PubMed DOI PMC
Labandeira CC, Currano ED. The fossil record of plant-insect dynamics. The Annu. Rev. Earth Planet. Sci. 2013; 41: 13.1–13.25.
Wahlberg N, Leneveu J, Kodandaramaiah U, Peña C, Nylin S, Freitas AVL, Brower AVZ. Nymphalid butterflies diversity following near demise at the Cretaceous/Tertiary boundary. Proc. Roy. Soc. B. 2009; 276: 4295–4302. PubMed PMC
Heikkilä M, Kaila L, Mutanen M, Peña C, Wahlberg N. Cretaceous origin and repeated tertiary diversification of the redefined butterflies. Proc. R. Soc. B. 2011; 279: 1093–1099. 10.1098/rspb.2011.1430 PubMed DOI PMC
Rehan SM, Leys R, Schwarz MP. First Evidence for a Massive Extinction Event Affecting Bees Close to the K-T Boundary. PLoS ONE 2013; 8, e76683 10.1371/journal.pone.0076683 PubMed DOI PMC
Schneider H, Schuettpelz E, Pryer KM, Cranfill R, Magallón S, Lupia R. Ferns Diversified in the Shadow of Angiosperms. Nature. 2004; 428: 553–557. 10.1038/nature02361 PubMed DOI
Nikolajev GV. Taksonomicheski priznaki I sostav rodov mezozoiskikh plastinchatousykh Zhukov (Coleoptera Scarabaeidae). Palenotologicheskii Zhurnal. 1992; 1992:76–88. [Translastion: Nikolajev GV Taxonomic criteria and generic composition of Mesozoic lamellicorn beetles (Coleoptera: Scarabaeidae). Paleontological Journal. 1993; 26: 96–111.
Nikolajev GV. Plastinchatousye zhuki podsemeystva Glaphyrinae (Coleoptera, Scarabaeidae) v nizhem mele Zabaykal’ya. Zhivotnyy mir Dal’nego Vostoka. 2005; 5: 69–78.
Piton L. Paleontologie du Gisement Eocene de Menat (Puy-de-Dome) (Flore et Faune), 306pp Lechevalier, Paris, France; 1940
Vincent P, Aubert M, Boivin P, Cantagrel JM, Lenat JF. Decouverte d’un volcanisme Paleocene en Auvergne: les maars de Menat et leurs annexes; etude g’eologique et geophysique. 1977; 7: 1057–1070.
Wickham HF. A report on some recent collections of fossil Coleoptera from the Miocene shales of Florissiant. Bull. Lab. Nat. Hist. Iowa. 1912; 3: 3–38
Cockerell TDA. Some Eocene insects from Colorado and Wyoming. Proc. US Natl. Mus. 1921; 59: 29–39.
Wappler T. Die Insekten aus dem Mittel-Eozan des Eckfelder Maares, Vulcaneifel. Mainzer Naturwissenschaftliches Arch. 2003; 27: 1–234.
Wickham HF. New Mieocene Coleoptera from Florissant. Bull. Mus. Comp. Zool. 1914; 58: 421–494.
Ratcliffe BC, Smith DM, Erwin D. Orytoantiquus borealis, new genus and species from the Eocen of Origon, U.S.A., the world’s oldest fossil dynastine and largest fossil scarabaeid (Coleoptera: Scarabaeidae: Dynastinae). Coleopt. Bull. 2005; 59: 127–135
Zherikhin VV, Mostovski MB, Vrsansky P, Blagoderov VA, Lukashevich ED. The unique Lower Cretaceous locality Baissa and other contemporaneous fossil insect sites in North and West Transbaikalia. In: Proceedings of the First Palaeoentomological Conference, Moscow, 1998. AMBA projects International, Bratislava, pp185-191. 1999.
Bai M, Ren D, Yang XK.
Nikolajev GV. The taxonomic placement in the subfamily Aphodiinae (Coleoptera, Scarabaeidae) of the new genus of Lower Cretaceous scarab beetles from Transbaykal.
Lin QB. Fossil insects from the Mesozoic of Zhejiang and Anhui provinces.
Beetle bioluminescence outshines extant aerial predators