Renal mitochondria response to sepsis: a sequential biopsy evaluation of experimental porcine model

. 2025 Feb 22 ; 13 (1) : 25. [epub] 20250222

Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39985720

Grantová podpora
Cooperatio Lékařská Fakulta v Plzni, Univerzita Karlova

Odkazy

PubMed 39985720
PubMed Central PMC11846788
DOI 10.1186/s40635-025-00732-0
PII: 10.1186/s40635-025-00732-0
Knihovny.cz E-zdroje

BACKGROUND: The pathophysiology of sepsis-induced acute kidney injury remains elusive. Although mitochondrial dysfunction is often perceived as the main culprit, data from preclinical models yielded conflicting results so far. The aim of this study was to assess the immune-metabolic background of sepsis-associated renal dysfunction using sequential biopsy approach with mitochondria function evaluation in a large clinically relevant porcine models mimicking two different paces and severity of sepsis and couple this approach with traditional parameters of renal physiology. METHODS: In this randomized, open-label study, 15 anaesthetized, mechanically ventilated and instrumented (renal artery flow probe and renal vein catheter) pigs were randomized in two disease severity groups-low severity (LS) sepsis (0.5 g/kg of autologous faeces intraperitoneally) and high severity (HS) sepsis (1 g/kg of autologous faeces intraperitoneally). Sequential cortical biopsies of the left kidney were performed and a pyramid-shaped kidney specimen with cortex, medulla and renal papilla was resected and processed at the end of the experiment. Oxygraphic data and western blot analysis of proteins involved in mitochondrial biogenesis and degradation were obtained. RESULTS: In contrast to increased mitochondrial activity observed in LS sepsis, a significant decrease in the oxidative phosphorylation capacity together with an increase in the respiratory system uncoupling was observed during the first 24 h after sepsis induction in the HS group. Those changes preceded alterations of renal haemodynamics. Furthermore, serum creatinine rose significantly during the first 24 h, indicating that renal dysfunction is not primarily driven by haemodynamic changes. Compared to cortex, renal medulla had significantly lower oxidative phosphorylation capacity and electron-transport system activity. PGC-1-alfa, a marker of mitochondrial biogenesis, was significantly decreased in HS group. CONCLUSIONS: In this experimental model, unique sequential tissue data show that the nature and dynamics of renal mitochondrial responses to sepsis are profoundly determined by the severity of infectious challenge and resulting magnitude of inflammatory insult. High disease severity is associated with early and stepwise progression of mitochondria dysfunction and acute kidney injury, both occurring independently from later renal macro-haemodynamic alterations. Our data may help explain the conflicting results of preclinical studies and suggest that sepsis encompasses a very broad spectrum of sepsis-induced acute kidney injury endotypes.

Zobrazit více v PubMed

Singer M, Deutschman CS, Seymour CW et al (2016) The third international consensus definitions for sepsis and septic shock (sepsis-3). JAMA 315:801. 10.1001/jama.2016.0287 PubMed PMC

Kellum JA, Prowle JR (2018) Paradigms of acute kidney injury in the intensive care setting. Nat Rev Nephrol 14:217–230. 10.1038/nrneph.2017.184 PubMed

Zarbock A, Nadim MK, Pickkers P et al (2023) Sepsis-associated acute kidney injury: consensus report of the 28th acute disease quality initiative workgroup. Nat Rev Nephrol 19:401–417. 10.1038/s41581-023-00683-3 PubMed

Bagshaw SM, The Cooperative Antimicrobial Therapy of Septic Shock (CATSS) Database Research Group, Lapinsky S, et al (2009) Acute kidney injury in septic shock: clinical outcomes and impact of duration of hypotension prior to initiation of antimicrobial therapy. Intensive Care Med 35:871–881. 10.1007/s00134-008-1367-2 PubMed

Bhatraju PK, Mukherjee P, Robinson-Cohen C et al (2016) Acute kidney injury subphenotypes based on creatinine trajectory identifies patients at increased risk of death. Crit Care. 10.1186/s13054-016-1546-4 PubMed PMC

Bhatraju PK, Zelnick LR, Chinchilli VM et al (2020) Association between early recovery of kidney function after acute kidney injury and long-term clinical outcomes. JAMA Netw Open 3:e202682. 10.1001/jamanetworkopen.2020.2682 PubMed PMC

Uhel F, Peters-Sengers H, Falahi F et al (2020) Mortality and host response aberrations associated with transient and persistent acute kidney injury in critically ill patients with sepsis: a prospective cohort study. Intensive Care Med 46:1576–1589. 10.1007/s00134-020-06119-x PubMed PMC

Boekstegers P, Weidenhöfer S, Kapsner T, Werdan K (1994) Skeletal muscle partial pressure of oxygen in patients with sepsis. Crit Care Med 22:640–650. 10.1097/00003246-199404000-00021 PubMed

Sair M, Etherington PJ, Peter Winlove C, Evans TW (2001) Tissue oxygenation and perfusion in patients with systemic sepsis. Crit Care Med 29:1343–1349. 10.1097/00003246-200107000-00008 PubMed

Takasu O, Gaut JP, Watanabe E et al (2013) Mechanisms of cardiac and renal dysfunction in patients dying of sepsis. Am J Respir Crit Care Med 187:509–517. 10.1164/rccm.201211-1983oc PubMed PMC

Maiden MJ, Otto S, Brealey JK et al (2016) Structure and function of the kidney in septic shock. A prospective controlled experimental study. Am J Respir Crit Care Med 194:692–700. 10.1164/rccm.201511-2285oc PubMed

Arulkumaran N, Pollen S, Greco E et al (2018) Renal tubular cell mitochondrial dysfunction occurs despite preserved renal oxygen delivery in experimental septic acute kidney injury. Crit Care Med 46:e318–e325. 10.1097/ccm.0000000000002937 PubMed PMC

Langenberg C, Wan L, Egi M et al (2006) Renal blood flow in experimental septic acute renal failure. Kidney Int 69:1996–2002. 10.1038/sj.ki.5000440 PubMed

Brealey D, Brand M, Hargreaves I et al (2002) Association between mitochondrial dysfunction and severity and outcome of septic shock. Lancet 360:219–223. 10.1016/s0140-6736(02)09459-x PubMed

Arulkumaran N, Deutschman CS, Pinsky MR et al (2016) Mitochondrial function in sepsis. Shock 45:271–281. 10.1097/shk.0000000000000463 PubMed PMC

Percie du Sert N, Ahluwalia A, Alam S et al (2020) Reporting animal research: explanation and elaboration for the ARRIVE guidelines 20. PLoS Biol 18(7):e3000411. 10.1371/journal.pbio.3000411 PubMed PMC

Kohoutova M, Horak J, Jarkovska D et al (2019) Vagus nerve stimulation attenuates multiple organ dysfunction in resuscitated porcine progressive sepsis. Crit Care Med 47:e461–e469. 10.1097/ccm.0000000000003714 PubMed

Chvojka J, Sykora R, Krouzecky A et al (2009) Renal haemodynamic, microcirculatory, metabolic and histopathological responses to peritonitis-induced septic shock in pigs. Crit Care 12:R164. 10.1186/cc7164 PubMed PMC

Pesta D, Gnaiger E (2012) High-resolution respirometry: OXPHOS protocols for human cells and permeabilized fibers from small biopsies of human muscle. In: Pesta D (ed) Mitochondrial bioenergetics. Humana Press, Totowa, pp 25–58 PubMed

Kuznetsov AV, Strobl D, Ruttmann E et al (2002) Evaluation of mitochondrial respiratory function in small biopsies of liver. Anal Biochem 305:186–194. 10.1006/abio.2002.5658 PubMed

Tuma Z, Kuncova J, Mares J, Matejovic M (2016) Mitochondrial proteomes of porcine kidney cortex and medulla: foundation for translational proteomics. Clin Exp Nephrol 20:39–49. 10.1007/s10157-015-1135-x PubMed

Singer M (2007) Mitochondrial function in sepsis: acute phase versus multiple organ failure. Crit Care Med 35:S441–S448. 10.1097/01.ccm.0000278049.48333.78 PubMed

Stanzani G, Duchen MR, Singer M (2019) The role of mitochondria in sepsis-induced cardiomyopathy. Biochim Biophys Acta Mol Basis Dis 1865:759–773. 10.1016/j.bbadis.2018.10.011 PubMed

Krawczyk CM, Holowka T, Sun J et al (2010) Toll-like receptor–induced changes in glycolytic metabolism regulate dendritic cell activation. Blood 115:4742–4749. 10.1182/blood-2009-10-249540 PubMed PMC

Palsson-McDermott EM, Curtis AM, Goel G et al (2015) Pyruvate kinase M2 regulates hif-1α activity and IL-1β induction and is a critical determinant of the Warburg effect in LPS-activated macrophages. Cell Metab 21:65–80. 10.1016/j.cmet.2014.12.005 PubMed PMC

Meyers AK, Zhu X (2020) The NLRP3 inflammasome: metabolic regulation and contribution to inflammaging. Cells 9:1808. 10.3390/cells9081808 PubMed PMC

Everts B, Amiel E, Huang SC-C et al (2014) TLR-driven early glycolytic reprogramming via the kinases TBK1-IKKɛ supports the anabolic demands of dendritic cell activation. Nat Immunol 15:323–332. 10.1038/ni.2833 PubMed PMC

Berod L, Friedrich C, Nandan A et al (2014) De novo fatty acid synthesis controls the fate between regulatory T and T helper 17 cells. Nat Med 20:1327–1333. 10.1038/nm.3704 PubMed

Shi LZ, Wang R, Huang G et al (2011) HIF1α–dependent glycolytic pathway orchestrates a metabolic checkpoint for the differentiation of TH17 and Treg cells. J Exp Med 208:1367–1376. 10.1084/jem.20110278 PubMed PMC

Steinberg GR, Carling D (2019) AMP-activated protein kinase: the current landscape for drug development. Nat Rev Drug Discov 18:527–551. 10.1038/s41573-019-0019-2 PubMed

Whitaker RM, Corum D, Beeson CC, Schnellmann RG (2016) Mitochondrial biogenesis as a pharmacological target: a new approach to acute and chronic diseases. Annu Rev Pharmacol Toxicol 56:229–249. 10.1146/annurev-pharmtox-010715-103155 PubMed

Nisoli E, Falcone S, Tonello C et al (2004) Mitochondrial biogenesis by NO yields functionally active mitochondria in mammals. Proc Natl Acad Sci USA 101:16507–16512. 10.1073/pnas.0405432101 PubMed PMC

Faubert B, Boily G, Izreig S et al (2013) AMPK is a negative regulator of the Warburg effect and suppresses tumor growth in vivo. Cell Metab 17:113–124. 10.1016/j.cmet.2012.12.001 PubMed PMC

Herzig S, Shaw RJ (2018) AMPK: guardian of metabolism and mitochondrial homeostasis. Nat Rev Mol Cell Biol 19:121–135. 10.1038/nrm.2017.95 PubMed PMC

Tran M, Tam D, Bardia A et al (2011) PGC-1α promotes recovery after acute kidney injury during systemic inflammation in mice. J Clin Invest 121:4003–4014. 10.1172/jci58662 PubMed PMC

Saxton RA, Sabatini DM (2017) MTOR signaling in growth, metabolism, and disease. Cell 168:960–976. 10.1016/j.cell.2017.02.004 PubMed PMC

Cheng S-C, Quintin J, Cramer RA et al (2014) mTOR- and HIF-1α–mediated aerobic glycolysis as metabolic basis for trained immunity. Science. 10.1126/science.1250684 PubMed PMC

Cheng S-C, Scicluna BP, Arts RJW et al (2016) Broad defects in the energy metabolism of leukocytes underlie immunoparalysis in sepsis. Nat Immunol 17:406–413. 10.1038/ni.3398 PubMed

Müller J, Radej J, Horak J et al (2023) Lactate: the fallacy of oversimplification. Biomedicines 11:3192. 10.3390/biomedicines11123192 PubMed PMC

Egan DF, Shackelford DB, Mihaylova MM et al (2011) Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy. Science 331:456–461. 10.1126/science.1196371 PubMed PMC

Hansen TE, Johansen T (2011) Following autophagy step by step. BMC Biol. 10.1186/1741-7007-9-39 PubMed PMC

Liu L, Feng D, Chen G et al (2012) Mitochondrial outer-membrane protein FUNDC1 mediates hypoxia-induced mitophagy in mammalian cells. Nat Cell Biol 14:177–185. 10.1038/ncb2422 PubMed

Weidemann A, Johnson RS (2008) Biology of HIF-1α. Cell Death Differ 15:621–627. 10.1038/cdd.2008.12 PubMed

Masoud GN, Li W (2015) HIF-1α pathway: role, regulation and intervention for cancer therapy. Acta Pharm Sin B 5:378–389. 10.1016/j.apsb.2015.05.007 PubMed PMC

Semenza GL (2007) Oxygen-dependent regulation of mitochondrial respiration by hypoxia-inducible factor 1. Biochem J 405:1–9. 10.1042/bj20070389 PubMed

Vallés PG, Gil Lorenzo AF, Garcia RD et al (2023) Toll-like receptor 4 in acute kidney injury. Int J Mol Sci 24:1415. 10.3390/ijms24021415 PubMed PMC

Brezis M, Kopolovic J, Rosen S (1988) Hypoxic injury to medullary thick ascending limbs in perfused rat kidneys: reversible and irreversible phases. J Electron Microsc Tech 9:293–298. 10.1002/jemt.1060090306 PubMed

Mizuiri S (2015) ACE and ACE2 in kidney disease. World J Nephrol 4:74. 10.5527/wjn.v4.i1.74 PubMed PMC

Porta F, Takala J, Weikert C et al (2006) Effects of prolonged endotoxemia on liver, skeletal muscle and kidney mitochondrial function. Crit Care 10:R118. 10.1186/cc5013 PubMed PMC

May CN, Ishikawa K, Wan L et al (2012) Renal bioenergetics during early gram-negative mammalian sepsis and angiotensin II infusion. Intensive Care Med 38:886–893. 10.1007/s00134-012-2487-2 PubMed

Luther T, Bülow-Anderberg S, Persson P et al (2023) Renal mitochondrial dysfunction in ovine experimental sepsis-associated acute kidney injury. Am J Physiol Renal Physiol 324(6):F571–F580. 10.1152/ajprenal.00294.2022 PubMed

Quoilin C, Mouithys-Mickalad A, Lécart S et al (2014) Evidence of oxidative stress and mitochondrial respiratory chain dysfunction in an in vitro model of sepsis-induced kidney injury. Biochim Biophys Acta Bioenerg 1837:1790–1800. 10.1016/j.bbabio.2014.07.005 PubMed

Singh A, Anjankar AP (2022) Propofol-related infusion syndrome: a clinical review. Cureus. 10.7759/cureus.30383 PubMed PMC

Barajas MB, Brunner SD, Wang A et al (2022) Propofol toxicity in the developing mouse heart mitochondria. Pediatr Res 92(5):1341–1349. 10.1038/s41390-022-01985-1 PubMed PMC

Schenkman KA, Yan S (2000) Propofol impairment of mitochondrial respiration in isolated perfused guinea pig hearts determined by reflectance spectroscopy. Crit Care Med 28(1):172–177. 10.1097/00003246-200001000-00028 PubMed

Short TG, Young Y (2003) Toxicity of intravenous anaesthetics. Best Pract Res Clin Anaesthesiol 17(1):77–89. 10.1053/bean.2002.0266 PubMed

Mirrakhimov AE, Voore P, Halytskyy O et al (2015) Propofol infusion syndrome in adults: a clinical update. Crit Care Res Pract 2015:260385. 10.1155/2015/260385 PubMed PMC

Sumi C, Okamoto A, Tanaka H et al (2018) Propofol induces a metabolic switch to glycolysis and cell death in a mitochondrial electron transport chain-dependent manner. PLoS ONE 13(2):e0192796. 10.1371/journal.pone.0192796 PubMed PMC

Gyrd-Hansen N (1968) Renal clearances in pigs: Inulin, endogenous creatinine, urea, para-amino-hippuric acid, sodium, potassium, and chloride. Acta Vet Scand 9(3):183–198. 10.1186/bf03547866 PubMed PMC

Frennby B, Sterner G, Almén T et al (1997) Clearance of iohexol,51Cr-EDTA and endogenous creatinine for determination of glomerular filtration rate in pigs with reduced renal function: a comparison between different clearance techniques. Scand J Clin Lab Invest 57(3):241–252. 10.3109/00365519709060033 PubMed

Matejovic M, Ince C, Chawla LS et al (2016) Renal hemodynamics in AKI: in search of new treatment targets. J Am Soc Nephrol 27:49–58. 10.1681/asn.2015030234 PubMed PMC

Jarkovská D, Markova M, Horak J et al (2018) Cellular mechanisms of myocardial depression in porcine septic shock. Front Physiol 2018:9. 10.3389/fphys.2018.00726 PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...