Heart Rate Variability in Porcine Progressive Peritonitis-Induced Sepsis

. 2015 ; 6 () : 412. [epub] 20160106

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid26779039

Accumulating evidence suggests that heart rate variability (HRV) alterations could serve as an indicator of sepsis progression and outcome, however, the relationships of HRV and major pathophysiological processes of sepsis remain unclear. Therefore, in this experimental study HRV was investigated in a clinically relevant long-term porcine model of severe sepsis/septic shock. HRV was analyzed by several methods and the parameters were correlated with pathophysiological processes of sepsis. In 16 anesthetized, mechanically ventilated, and instrumented domestic pigs of either gender, sepsis was induced by fecal peritonitis. Experimental subjects were screened up to the refractory shock development or death. ECG was continuously recorded throughout the experiment, afterwards RR intervals were detected and HRV parameters computed automatically using custom made measurement and analysis MATLAB routines. In all septic animals, progressive hyperdynamic septic shock developed. The statistical measures of HRV, geometrical measures of HRV and Poincaré plot analysis revealed a pronounced reduction of HRV that developed quickly upon the onset of sepsis and was maintained throughout the experiment. The frequency domain analysis demonstrated a decrease in the high frequency component and increase in the low frequency component together with an increase of the low/high frequency component ratio. The reduction of HRV parameters preceded sepsis-associated hemodynamic changes including heart rate increase or shock progression. In a clinically relevant porcine model of peritonitis-induced progressive septic shock, reduction of HRV parameters heralded sepsis development. HRV reduction was associated with a pronounced parasympathetic inhibition and a shift of sympathovagal balance. Early reduction of HRV may serve as a non-invasive and sensitive marker of systemic inflammatory syndrome, thereby widening the therapeutic window for early interventions.

Zobrazit více v PubMed

Adhikari N. K. J., Fowler R. A., Bhagwanjee S., Rubenfeld G. D. (2010). Critical care and the global burden of critical illness in adults. Lancet 376, 1339–1346. 10.1016/S0140-6736(10)60446-1 PubMed DOI PMC

Ahmad S., Ramsay T., Huebsch L., Flanagan S., McDiarmid S., Batkin I., et al. . (2009). Continuous multi-parameter heart rate variability analysis heralds onset of sepsis in adults. PLoS ONE 4:e6642. 10.1371/journal.pone.0006642 PubMed DOI PMC

Angus D. C., van der Poll T. (2013). Severe sepsis and septic shock. N. Engl. J. Med. 369, 840–851. 10.1056/NEJMra1208623 PubMed DOI

Annane D., Trabold F., Sharshar T., Jarrin I., Blanc A. S., Raphael J. C., et al. . (1999). Inappropriate sympathetic activation at onset of septic shock: a spectral analysis approach. Am. J. Respir. Crit. Care Med. 160, 458–465. 10.1164/ajrccm.160.2.9810073 PubMed DOI

ARISE Investigators, ANZICS Clinical Trials Group. Peake S. L., Delaney A., Bailey M., Bellomo R., et al. . (2014). Goal-directed resuscitation for patients with early septic shock. N. Engl. J. Med. 371, 1496–1506. 10.1056/NEJMoa1404380 PubMed DOI

Barnaby D., Ferrick K., Kaplan D. T., Shah S., Bijur P., Gallagher E. J. (2002). Heart rate variability in emergency department patients with sepsis. Acad. Emerg. Med. 9, 661–670. 10.1111/j.1553-2712.2002.tb02143.x PubMed DOI

Bohanon F. J., Mrazek A. A., Shabana M. T., Mims S., Radhakrishnan G. L., Kramer G. C., et al. . (2015). Heart rate variability analysis is more sensitive at identifying neonatal sepsis than conventional vital signs. Am. J. Surg. 210, 661–667. 10.1016/j.amjsurg.2015.06.002 PubMed DOI PMC

Borovikova L. V., Ivanova S., Zhang M., Yang H., Botchkina G. I., Watkins L. R., et al. . (2000). Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature 405, 458–462. 10.1038/35013070 PubMed DOI

Chen W.-L., Chen J.-H., Huang C.-C., Kuo C.-D., Huang C.-I., Lee L.-S. (2008). Heart rate variability measures as predictors of in-hospital mortality in ED patients with sepsis. Am. J. Emerg. Med. 26, 395–401. 10.1016/j.ajem.2007.06.016 PubMed DOI

Chen W.-L., Kuo C.-D. (2007). Characteristics of heart rate variability can predict impending septic shock in emergency department patients with sepsis. Acad. Emerg. Med. 14, 392–397. 10.1111/j.1553-2712.2007.tb01796.x PubMed DOI

Durosier L. D., Herry C. L., Cortes M., Cao M., Burns P., Desrochers A., et al. . (2015). Does heart rate variability reflect the systemic inflammatory response in a fetal sheep model of lipopolysaccharide-induced sepsis? Physiol. Meas. 36, 2089–2102. 10.1088/0967-3334/36/10/2089 PubMed DOI PMC

Ellenby M. S., McNames J., Lai S., McDonald B. A., Krieger D., Sclabassi R. J., et al. . (2001). Uncoupling and recoupling of autonomic regulation of the heart beat in pediatric septic shock. Shock 16, 274–277. 10.1097/00024382-200116040-00007 PubMed DOI

Fong Y., Moldawer L. L., Marano M., Wei H., Tatter S. B., Clarick R. H., et al. . (1989). Endotoxemia elicits increased circulating beta 2-IFN/IL-6 in man. J. Immunol. 142, 2321–2324. PubMed

Gang Y., Malik M. (2002). Heart rate variability in critical care medicine. Curr. Opin. Crit. Care 8, 371–375. 10.1097/00075198-200210000-00002 PubMed DOI

Gao J., Gurbaxani B. M., Hu J., Heilman K. J., Emanuele Ii V. A., Lewis G. F., et al. . (2013). Multiscale analysis of heart rate variability in non-stationary environments. Front. Physiol. 4:119. 10.3389/fphys.2013.00119 PubMed DOI PMC

Gao J., Hu J., Tung W.-W., Blasch E. (2012). Multiscale analysis of biological data by scale-dependent lyapunov exponent. Front. Physiol. 2:110. 10.3389/fphys.2011.00110 PubMed DOI PMC

Godin P. J., Fleisher L. A., Eidsath A., Vandivier R. W., Preas H. L., Banks S. M., et al. . (1996). Experimental human endotoxemia increases cardiac regularity: results from a prospective, randomized, crossover trial. Crit. Care Med. 24, 1117–1124. 10.1097/00003246-199607000-00009 PubMed DOI

Goldstein B., Kempski M. H., Stair D., Tipton R. B., DeKing D., DeLong D. J., et al. . (1995). Autonomic modulation of heart rate variability during endotoxin shock in rabbits. Crit. Care Med. 23, 1694–1702. 10.1097/00003246-199510000-00014 PubMed DOI

Griffin M. P., Lake D. E., Bissonette E. A., Harrell F. E., Jr., O'shea T. M., Moorman J. R. (2005). Heart rate characteristics: novel physiomarkers to predict neonatal infection and death. Pediatrics 116, 1070–1074. 10.1542/peds.2004-2461 PubMed DOI

Griffin M. P., Lake D. E., O'shea T. M., Moorman J. R. (2007). Heart rate characteristics and clinical signs in neonatal sepsis. Pediatr. Res. 61, 222–227. 10.1203/01.pdr.0000252438.65759.af PubMed DOI

Griffin M. P., Moorman J. R. (2001). Toward the early diagnosis of neonatal sepsis and sepsis-like illness using novel heart rate analysis. Pediatrics 107, 97–104. 10.1542/peds.107.1.97 PubMed DOI

Griffin M. P., O'shea T. M., Bissonette E. A., Harrell F. E., Jr., Lake D. E., Moorman J. R. (2003). Abnormal heart rate characteristics preceding neonatal sepsis and sepsis-like illness. Pediatr. Res. 53, 920–926. 10.1203/01.PDR.0000064904.05313.D2 PubMed DOI

Griffin M. P., O'shea T. M., Bissonette E. A., Harrell F. E., Jr., Lake D. E., Moorman J. R. (2004). Abnormal heart rate characteristics are associated with neonatal mortality. Pediatr. Res. 55, 782–788. 10.1203/01.PDR.0000119366.21770.9E PubMed DOI

Hoover D. B., Ozment T. R., Wondergem R., Li C., Williams D. L. (2015). Impaired heart rate regulation and depression of cardiac chronotropic and dromotropic function in polymicrobial sepsis. Shock 43, 185–191. 10.1097/SHK.0000000000000272 PubMed DOI PMC

Hu J., Gao J., Tung W. (2009). Characterizing heart rate variability by scale-dependent Lyapunov exponent. Chaos 19:028506. 10.1063/1.3152007 PubMed DOI

Hu J., Gao J., Tung W., Cao Y. (2010). Multiscale analysis of heart rate variability: a comparison of different complexity measures. Ann. Biomed. Eng. 38, 854–864. 10.1007/s10439-009-9863-2 PubMed DOI

Huang J., Wang Y., Jiang D., Zhou J., Huang X. (2010). The sympathetic-vagal balance against endotoxemia. J. Neural. Transm. 117, 729–735. 10.1007/s00702-010-0407-6 PubMed DOI

Klöckner U., Rueckschloss U., Grossmann C., Matzat S., Schumann K., Ebelt H., et al. . (2014). Inhibition of cardiac pacemaker channel hHCN2 depends on intercalation of lipopolysaccharide into channel-containing membrane microdomains. J. Physiol. 592, 1199–1211. 10.1113/jphysiol.2013.268540 PubMed DOI PMC

Kojic D., Siegler B. H., Uhle F., Lichtenstern C., Nawroth P. P., Weigand M. A., et al. . (2015). Are there new approaches for diagnosis, therapy guidance and outcome prediction of sepsis? World J. Exp. Med. 5, 50–63. 10.5493/wjem.v5.i2.50 PubMed DOI PMC

Korach M., Sharshar T., Jarrin I., Fouillot J. P., Raphaël J. C., Gajdos P., et al. . (2001). Cardiac variability in critically ill adults: influence of sepsis. Crit. Care Med. 29, 1380–1385. 10.1097/00003246-200107000-00013 PubMed DOI

Kumar A., Roberts D., Wood K. E., Light B., Parrillo J. E., Sharma S., et al. . (2006). Duration of hypotension before initiation of effective antimicrobial therapy is the critical determinant of survival in human septic shock. Crit. Care Med. 34, 1589–1596. 10.1097/01.CCM.0000217961.75225.E9 PubMed DOI

Martin G. S., Mannino D. M., Eaton S., Moss M. (2003). The epidemiology of sepsis in the United States from 1979 through 2000. N. Engl. J. Med. 348, 1546–1554. 10.1056/NEJMoa022139 PubMed DOI

Mouncey P. R., Osborn T. M., Power G. S., Harrison D. A., Sadique M. Z., Grieve R. D., et al. . (2015). Trial of early, goal-directed resuscitation for septic shock. N. Engl. J. Med. 372, 1301–1311. 10.1056/NEJMoa1500896 PubMed DOI

Olofsson P. S., Rosas-Ballina M., Levine Y. A., Tracey K. J. (2012). Rethinking inflammation: neural circuits in the regulation of immunity. Immunol. Rev. 248, 188–204. 10.1111/j.1600-065X.2012.01138.x PubMed DOI PMC

Osuchowski M. F., Welch K., Yang H., Siddiqui J., Remick D. G. (2007). Chronic sepsis mortality characterized by an individualized inflammatory response. J. Immunol. 179, 623–630. 10.4049/jimmunol.179.1.623 PubMed DOI PMC

Papaioannou V. E., Dragoumanis C., Theodorou V., Gargaretas C., Pneumatikos I. (2009). Relation of heart rate variability to serum levels of C-reactive protein, interleukin 6, and 10 in patients with sepsis and septic shock. J. Crit. Care 24, 625.e1–625.e7. 10.1016/j.jcrc.2008.11.010 PubMed DOI

Papaioannou V. E., Verkerk A. O., Amin A. S., de Bakker J. M. T. (2013). Intracardiac origin of heart rate variability, pacemaker funny current and their possible association with critical illness. Curr. Cardiol. Rev. 9, 82–96. 10.2174/1573403x11309010010 PubMed DOI PMC

Rivers E., Nguyen B., Havstad S., Ressler J., Muzzin A., Knoblich B., et al. . (2001). Early goal-directed therapy in the treatment of severe sepsis and septic shock. N. Engl. J. Med. 345, 1368–1377. 10.1056/NEJMoa010307 PubMed DOI

Sacha J., Sobon J., Sacha K., Barabach S. (2013). Heart rate impact on the reproducibility of heart rate variability analysis. Int. J. Cardiol. 168, 4257–4259. 10.1016/j.ijcard.2013.04.160 PubMed DOI

Sartelli M. (2010). A focus on intra-abdominal infections. World J. Emerg. Surg. 5:9. 10.1186/1749-7922-5-9 PubMed DOI PMC

Sartelli M., Catena F., Di Saverio S., Ansaloni L., Malangoni M., Moore E. E., et al. . (2014). Current concept of abdominal sepsis: WSES position paper. World J. Emerg. Surg. 9:22. 10.1186/1749-7922-9-22 PubMed DOI PMC

Seely A. J., Christou N. V. (2000). Multiple organ dysfunction syndrome: exploring the paradigm of complex nonlinear systems. Crit. Care Med. 28, 2193–2200. 10.1097/00003246-200007000-00003 PubMed DOI

Tang C., Liu M. S. (1996). Initial externalization followed by internalization of beta-adrenergic receptors in rat heart during sepsis. Am. J. Physiol. 270, R254–R263. PubMed

Task Force of the European Society of Cardiology the North American Society of Pacing Electrophysiology (1996). Heart rate variability: standards of measurement, physiological interpretation, and clinical use. Circulation 93, 1043–1065. 10.1161/01.CIR.93.5.1043 PubMed DOI

Tiru B., DiNino E. K., Orenstein A., Mailloux P. T., Pesaturo A., Gupta A., et al. . (2015). The economic and humanistic burden of severe sepsis. Pharmacoeconomics 33, 925–937. 10.1007/s40273-015-0282-y PubMed DOI

Tracey K. J. (2007). Physiology and immunology of the cholinergic antiinflammatory pathway. J. Clin. Invest. 117, 289–296. 10.1172/JCI30555 PubMed DOI PMC

Tschaikowsky K., Hedwig-Geissing M., Schiele A., Bremer F., Schywalsky M., Schüttler J. (2002). Coincidence of pro- and anti-inflammatory responses in the early phase of severe sepsis: longitudinal study of mononuclear histocompatibility leukocyte antigen-DR expression, procalcitonin, C-reactive protein, and changes in T-cell subsets in septic and postoperative patients. Crit. Care Med. 30, 1015–1023. 10.1097/00003246-200205000-00010 PubMed DOI

Tulppo M. P., Mäkikallio T. H., Seppänen T., Shoemaker K., Tutungi E., Hughson R. L., et al. . (2001). Effects of pharmacological adrenergic and vagal modulation on fractal heart rate dynamics. Clin. Physiol. 21, 515–523. 10.1046/j.1365-2281.2001.00344.x PubMed DOI

Wang H., Liao H., Ochani M., Justiniani M., Lin X., Yang L., et al. . (2004). Cholinergic agonists inhibit HMGB1 release and improve survival in experimental sepsis. Nat. Med. 10, 1216–1221. 10.1038/nm1124 PubMed DOI

Wu J., Hu L., Zhang G., Wu F., He T. (2015). Accuracy of presepsin in sepsis diagnosis: a systematic review and meta-analysis. PLoS ONE 10:e0133057. 10.1371/journal.pone.0133057 PubMed DOI PMC

Zorn-Pauly K., Pelzmann B., Lang P., Mächler H., Schmidt H., Ebelt H., et al. . (2007). Endotoxin impairs the human pacemaker current If. Shock 28, 655–661. 10.1097/shk.0b013e31812386bf PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...