Altered olfactory responses in Fmr1 KO mice
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
R01 MH125979
NIMH NIH HHS - United States
574967
Simons Foundation Autism Research Initiative
R01MH125979
NIMH NIH HHS - United States
PubMed
39848954
PubMed Central
PMC11758012
DOI
10.1038/s41598-024-80000-5
PII: 10.1038/s41598-024-80000-5
Knihovny.cz E-zdroje
- Klíčová slova
- Fmr1 KO mice, Fragile X syndrome, Odor discrimination test, Olfactory behavior, Olfactory bulb,
- MeSH
- bulbus olfactorius * metabolismus MeSH
- chování zvířat MeSH
- čich * fyziologie MeSH
- modely nemocí na zvířatech MeSH
- myši knockoutované * MeSH
- myši MeSH
- odoranty * MeSH
- protein FMRP * genetika metabolismus MeSH
- syndrom fragilního X * patofyziologie genetika MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- Fmr1 protein, mouse MeSH Prohlížeč
- protein FMRP * MeSH
Fragile X syndrome (FXS) is a neurodevelopmental disorder oftentimes associated with abnormal social behaviors and altered sensory responsiveness. It is hypothesized that the inappropriate filtering of sensory stimuli, including olfaction, can lead to aberrant social behavior in FXS. However, previous studies investigating olfaction in animal models of FXS have shown inconsistent results. Here, we found that Fmr1 knock-out (KO) mice, a mouse model of FXS, showed increased sniffing duration for non-social odors during their first exposure. Additionally, while wild-type (WT) males demonstrated differences in behavioral patterns between non-social odors while Fmr1 KO males did not show such distinction. We also showed that Fmr1 KO males spent significantly less time sniffing female urine odor compared to WT males. Moreover, we found an increased volume of the olfactory bulb in Fmr1 KO males. Overall, our findings suggest that the Fmr1 KO mice demonstrate atypical olfactory behaviors as well as structural changes in the olfactory bulb.
Zobrazit více v PubMed
Verdura, E. et al. Heterogeneity in fragile X syndrome highlights the need for precision medicine-based treatments. Front. Psychiatry12, 722378. 10.3389/fpsyt.2021.722378 (2021). PubMed PMC
Pieretti, M. et al. Absence of expression of the FMR-1 gene in fragile X syndrome. Cell66, 817–822. 10.1016/0092-8674(91)90125-i (1991). PubMed
McCary, L. M. & Roberts, J. E. Early identification of autism in fragile X syndrome: A review. J. Intellect. Disabil. Res.57, 803–814. 10.1111/j.1365-2788.2012.01609.x (2013). PubMed PMC
Roberts, J. E., McCary, L. M., Shinkareva, S. V. & Bailey, D. B. Jr. Infant development in fragile X syndrome: Cross-syndrome comparisons. J. Autism Dev. Disord.46, 2088–2099. 10.1007/s10803-016-2737-1 (2016). PubMed PMC
Miller, L. J., Reisman, J., McIntosh, D. N. & Simon, J. in Sensory integration and developmental disabilities (eds S. Roley, R. C. Schaaf, & E. Blanche) (Therapy Skill Builders, 2001).
Bodaleo, F., Tapia-Monsalves, C., Cea-Del Rio, C., Gonzalez-Billault, C. & Nunez-Parra, A. Structural and functional abnormalities in the olfactory system of fragile X syndrome models. Front. Mol. Neurosci.12, 135. 10.3389/fnmol.2019.00135 (2019). PubMed PMC
Tomchek, S. D. & Dunn, W. Sensory processing in children with and without autism: A comparative study using the short sensory profile. Am. J. Occup. Ther.61, 190–200. 10.5014/ajot.61.2.190 (2007). PubMed
Pritchard, W. S., Raz, N. & August, G. J. Visual augmenting/reducing and P300 in autistic children. J. Autism Dev. Disord.17, 231–242. 10.1007/BF01495058 (1987). PubMed
Tecchio, F. et al. Auditory sensory processing in autism: A magnetoencephalographic study. Biol. Psychiatry54, 647–654. 10.1016/s0006-3223(03)00295-6 (2003). PubMed
Soudry, Y., Lemogne, C., Malinvaud, D., Consoli, S. M. & Bonfils, P. Olfactory system and emotion: Common substrates. Eur. Ann. Otorhinolaryngol. Head Neck Dis.128, 18–23. 10.1016/j.anorl.2010.09.007 (2011). PubMed
Parma, V., Bulgheroni, M., Tirindelli, R. & Castiello, U. Body odors promote automatic imitation in autism. Biol. Psychiatry74, 220–226. 10.1016/j.biopsych.2013.01.010 (2013). PubMed
Semin, G. R. & Groot, J. H. The chemical bases of human sociality. Trends Cogn. Sci.17, 427–429. 10.1016/j.tics.2013.05.008 (2013). PubMed
Frumin, I. et al. A social chemosignaling function for human handshaking. Elife4, 5154. 10.7554/eLife.05154 (2015). PubMed PMC
Endevelt-Shapira, Y. et al. Altered responses to social chemosignals in autism spectrum disorder. Nat. Neurosci.21, 111–119. 10.1038/s41593-017-0024-x (2018). PubMed
Rozenkrantz, L. et al. A mechanistic link between olfaction and autism spectrum disorder. Curr. Biol.25, 1904–1910. 10.1016/j.cub.2015.05.048 (2015). PubMed PMC
Rogers, S. J., Hepburn, S. & Wehner, E. Parent reports of sensory symptoms in toddlers with autism and those with other developmental disorders. J. Autism Dev. Disord.33, 631–642. 10.1023/b:jadd.0000006000.38991.a7 (2003). PubMed
Xu, M., Minagawa, Y., Kumazaki, H., Okada, K. I. & Naoi, N. Prefrontal responses to odors in individuals with autism spectrum disorders: Functional nirs measurement combined with a fragrance pulse ejection system. Front. Hum. Neurosci.14, 523456. 10.3389/fnhum.2020.523456 (2020). PubMed PMC
Kumar, A. et al. A brain region-specific predictive gene map for autism derived by profiling a reference gene set. PLoS One6, e28431. 10.1371/journal.pone.0028431 (2011). PubMed PMC
Musumeci, S. A. et al. Audiogenic seizures susceptibility in transgenic mice with fragile X syndrome. Epilepsia41, 19–23. 10.1111/j.1528-1157.2000.tb01499.x (2000). PubMed
Chen, L. & Toth, M. Fragile X mice develop sensory hyperreactivity to auditory stimuli. Neuroscience103, 1043–1050. 10.1016/s0306-4522(01)00036-7 (2001). PubMed
Levenga, J. et al. AFQ056, a new mGluR5 antagonist for treatment of fragile X syndrome. Neurobiol. Dis.42, 311–317. 10.1016/j.nbd.2011.01.022 (2011). PubMed
Felgerolle, C. et al. Visual behavior impairments as an aberrant sensory processing in the mouse model of fragile X syndrome. Front. Behav. Neurosci.13, 228. 10.3389/fnbeh.2019.00228 (2019). PubMed PMC
Franco, L. M., Okray, Z., Linneweber, G. A., Hassan, B. A. & Yaksi, E. Reduced lateral inhibition impairs olfactory computations and behaviors in a drosophila model of fragile X syndrome. Curr. Biol.27, 1111–1123. 10.1016/j.cub.2017.02.065 (2017). PubMed PMC
Larson, J., Kim, D., Patel, R. C. & Floreani, C. Olfactory discrimination learning in mice lacking the fragile X mental retardation protein. Neurobiol. Learn. Mem.90, 90–102. 10.1016/j.nlm.2008.01.002 (2008). PubMed PMC
Schilit Nitenson, A. et al. Fragile X mental retardation protein regulates olfactory sensitivity but not odorant discrimination. Chem. Sens40, 345–350. 10.1093/chemse/bjv019 (2015). PubMed PMC
Mazal, P. P., Haehner, A. & Hummel, T. Relation of the volume of the olfactory bulb to psychophysical measures of olfactory function. Eur. Arch. Otorhinolaryngol.273, 1–7. 10.1007/s00405-014-3325-7 (2016). PubMed
Buschhuter, D. et al. Correlation between olfactory bulb volume and olfactory function. Neuroimage42, 498–502. 10.1016/j.neuroimage.2008.05.004 (2008). PubMed
Takahashi, H., Yoshihara, S. & Tsuboi, A. The functional role of olfactory bulb granule cell subtypes derived from embryonic and postnatal neurogenesis. Front. Mol. Neurosci.11, 229. 10.3389/fnmol.2018.00229 (2018). PubMed PMC
Fujiwara, N. & Cave, J. W. Partial conservation between mice and humans in olfactory bulb interneuron transcription factor codes. Front. Neurosci.10, 337. 10.3389/fnins.2016.00337 (2016). PubMed PMC
Lledo, P. M., Merkle, F. T. & Alvarez-Buylla, A. Origin and function of olfactory bulb interneuron diversity. Trends Neurosci.31, 392–400. 10.1016/j.tins.2008.05.006 (2008). PubMed PMC
Luo, Y. et al. Fragile x mental retardation protein regulates proliferation and differentiation of adult neural stem/progenitor cells. PLoS Genet.6, e1000898. 10.1371/journal.pgen.1000898 (2010). PubMed PMC
Scotto-Lomassese, S. et al. Fragile X mental retardation protein regulates new neuron differentiation in the adult olfactory bulb. J. Neurosci.31, 2205–2215. 10.1523/JNEUROSCI.5514-10.2011 (2011). PubMed PMC
Castren, M. et al. Altered differentiation of neural stem cells in fragile X syndrome. Proc. Natl. Acad. Sci. U. S. A.102, 17834–17839. 10.1073/pnas.0508995102 (2005). PubMed PMC
The Dutch-Belgian Fragile X Consortium. Fmr1 knockout mice: A model to study fragile X mental retardation. Cell78, 23–33 (1994). PubMed
Percie du Sert, N. et al. The ARRIVE guidelines 2.0: Updated guidelines for reporting animal research. PLoS Biol.18, e3000410. 10.1371/journal.pbio.3000410 (2020). PubMed PMC
Zou, J., Wang, W., Pan, Y. W., Lu, S. & Xia, Z. Methods to measure olfactory behavior in mice. Curr. Protoc. Toxicol.63, 11–18. 10.1002/0471140856.tx1118s63 (2015). PubMed PMC
Arbuckle, E. P., Smith, G. D., Gomez, M. C. & Lugo, J. N. Testing for odor discrimination and habituation in mice. J. Vis. Exp.99, e52615. 10.3791/52615 (2015). PubMed PMC
Yang, M. & Crawley, J. N. Simple behavioral assessment of mouse olfaction. Curr. Protoc. Neurosci.8, 24. 10.1002/0471142301.ns0824s48 (2009). PubMed PMC
Wersinger, S. R. et al. Social motivation is reduced in vasopressin 1b receptor null mice despite normal performance in an olfactory discrimination task. Horm. Behav.46, 638–645. 10.1016/j.yhbeh.2004.07.004 (2004). PubMed
Achiraman, S. & Archunan, G. 1-Iodo-2methylundecane, a putative estrus-specific urinary chemo-signal of female mouse (Mus musculus). Theriogenology66, 1913–1920. 10.1016/j.theriogenology.2006.05.010 (2006). PubMed
Yamazaki, K., Beauchamp, G. K., Singer, A., Bard, J. & Boyse, E. A. Odortypes: Their origin and composition. Proc. Natl. Acad. Sci. U. S. A.96, 1522–1525. 10.1073/pnas.96.4.1522 (1999). PubMed PMC
Schaefer, M. L., Young, D. A. & Restrepo, D. Olfactory fingerprints for major histocompatibility complex-determined body Odors. J. Neurosci.21, 2481–2487 (2001). PubMed PMC
Rodrigues, L. S. et al. Olfactory impairment in the rotenone model of Parkinson’s disease is associated with bulbar dopaminergic D2 activity after REM sleep deprivation. Front. Cell Neurosci.8, 383. 10.3389/fncel.2014.00383 (2014). PubMed PMC
Cora, M. C., Kooistra, L. & Travlos, G. Vaginal cytology of the laboratory rat and mouse: Review and criteria for the staging of the Estrous cycle using stained vaginal smears. Toxicol. Pathol.43, 776–793. 10.1177/0192623315570339 (2015). PubMed PMC
Pawluski, J. L., Brummelte, S., Barha, C. K., Crozier, T. M. & Galea, L. A. Effects of steroid hormones on neurogenesis in the hippocampus of the adult female rodent during the estrous cycle, pregnancy, lactation and aging. Front. Neuroendocrinol.30, 343–357. 10.1016/j.yfrne.2009.03.007 (2009). PubMed
Merzin, M. Applying stereological method in radiology. Volume measurement, University of Tartu, (2008).
Mouton, Peter. Unbiased stereology (Johns Hopkins University Press, 2011). 10.56021/9780801899843.
Gundersen, H. J. & Jensen, E. B. The efficiency of systematic sampling in stereology and its prediction. J. Microsc.147, 229–263 (1987). PubMed
Latchney, S. E. et al. The effect of spaceflight on mouse olfactory bulb volume, neurogenesis, and cell death indicates the protective effect of novel environment. . Appl. Physiol.1985(116), 1593–1604. 10.1152/japplphysiol.01174.2013 (2014). PubMed PMC
Benson, T. E., Ryugo, D. K. & Hinds, J. W. Effects of sensory deprivation on the developing mouse olfactory system: A light and electron microscopic, morphometric analysis. J. Neurosci.4, 638–653. 10.1523/JNEUROSCI.04-03-00638.1984 (1984). PubMed PMC
Prosser, H. M., Bradley, A. & Caldwell, M. A. Olfactory bulb hypoplasia in Prokr2 null mice stems from defective neuronal progenitor migration and differentiation. Eur. J. Neurosci.26, 3339–3344. 10.1111/j.1460-9568.2007.05958.x (2007). PubMed PMC
Fazzari, P., Mortimer, N., Yabut, O., Vogt, D. & Pla, R. Cortical distribution of GABAergic interneurons is determined by migration time and brain size. Development147, 185033. 10.1242/dev.185033 (2020). PubMed PMC
Chao, O. Y. et al. Altered dopaminergic pathways and therapeutic effects of intranasal dopamine in two distinct mouse models of autism. Mol. Brain.13, 111. 10.1186/s13041-020-00649-7 (2020). PubMed PMC
Rais, M., Binder, D. K., Razak, K. A. & Ethell, I. M. Sensory processing phenotypes in fragile X syndrome. ASN Neuro10, 1759091418801092. 10.1177/1759091418801092 (2018). PubMed PMC
Zorio, D. A., Jackson, C. M., Liu, Y., Rubel, E. W. & Wang, Y. Cellular distribution of the fragile X mental retardation protein in the mouse brain. J. Comp. Neurol.525, 818–849. 10.1002/cne.24100 (2017). PubMed PMC
Jennings, L., Williams, E., Avlas, M. & Dewan, A. The behavioral sensitivity of mice to acetate esters. Chem. Senses47, 17. 10.1093/chemse/bjac017 (2022). PubMed PMC
Ogawa, K., Tashima, A., Sadakata, M. & Morinaga, O. Appetite-enhancing effects of vanilla flavours such as vanillin. J. Nat. Med.72, 798–802. 10.1007/s11418-018-1206-x (2018). PubMed
Root, C. M., Denny, C. A., Hen, R. & Axel, R. The participation of cortical amygdala in innate, odour-driven behaviour. Nature515, 269–273. 10.1038/nature13897 (2014). PubMed PMC
Lin, D. Y., Zhang, S. Z., Block, E. & Katz, L. C. Encoding social signals in the mouse main olfactory bulb. Nature434, 470–477. 10.1038/nature03414 (2005). PubMed
Harvey, S., Jemiolo, B. & Novotny, M. Pattern of volatile compounds in dominant and subordinate male mouse urine. J. Chem. Ecol.15, 2061–2072. 10.1007/BF01207438 (1989). PubMed
Jemiolo, B., Xie, T. M., Andreolini, F., Baker, A. E. & Novotny, M. Thet complex of the mouse: Chemical characterization by urinary volatile profiles. J. Chem. Ecol.17, 353–367. 10.1007/BF00994338 (1991). PubMed
Lehmann, M. L., Geddes, C. E., Lee, J. L. & Herkenham, M. Urine scent marking (USM): A novel test for depressive-like behavior and a predictor of stress resiliency in mice. PLoS One8, e69822. 10.1371/journal.pone.0069822 (2013). PubMed PMC
Kleitz-Nelson, H. K., Dominguez, J. M. & Ball, G. F. Dopamine release in the medial preoptic area is related to hormonal action and sexual motivation. Behav. Neurosci.124, 773–779. 10.1037/a0021490 (2010). PubMed PMC
Capsoni, S., Fogli Iseppe, A., Casciano, F. & Pignatelli, A. Unraveling the role of dopaminergic and calretinin interneurons in the olfactory bulb. Front. Neural. Circ.15, 718221. 10.3389/fncir.2021.718221 (2021). PubMed PMC
Wei, C. J., Linster, C. & Cleland, T. A. Dopamine D(2) receptor activation modulates perceived odor intensity. Behav. Neurosci.120, 393–400. 10.1037/0735-7044.120.2.393 (2006). PubMed
Fish, E. W. et al. Changes in sensitivity of reward and motor behavior to dopaminergic, glutamatergic, and cholinergic drugs in a mouse model of fragile X syndrome. PLoS One8, e77896. 10.1371/journal.pone.0077896 (2013). PubMed PMC
Paul, K., Venkitaramani, D. V. & Cox, C. L. Dampened dopamine-mediated neuromodulation in prefrontal cortex of fragile X mice. J. Physiol.591, 1133–1143. 10.1113/jphysiol.2012.241067 (2013). PubMed PMC
Fulks, J. L. et al. Dopamine release and uptake impairments and behavioral alterations observed in mice that model fragile X mental retardation syndrome. ACS Chem. Neurosci.1, 679–690. 10.1021/cn100032f (2010). PubMed PMC
Wang, H. et al. FMRP acts as a key messenger for dopamine modulation in the forebrain. Neuron59, 634–647. 10.1016/j.neuron.2008.06.027 (2008). PubMed
Galvez, R., Smith, R. L. & Greenough, W. T. Olfactory bulb mitral cell dendritic pruning abnormalities in a mouse model of the Fragile-X mental retardation syndrome: Further support for FMRP’s involvement in dendritic development. Brain. Res. Dev. Brain. Res.157, 214–216. 10.1016/j.devbrainres.2005.03.010 (2005). PubMed
Lai, J. K., Lerch, J. P., Doering, L. C., Foster, J. A. & Ellegood, J. Regional brain volumes changes in adult male FMR1-KO mouse on the FVB strain. Neuroscience318, 12–21. 10.1016/j.neuroscience.2016.01.021 (2016). PubMed
Ellegood, J., Pacey, L. K., Hampson, D. R., Lerch, J. P. & Henkelman, R. M. Anatomical phenotyping in a mouse model of fragile X syndrome with magnetic resonance imaging. Neuroimage53, 1023–1029. 10.1016/j.neuroimage.2010.03.038 (2010). PubMed
Golden, C. E. M. et al. Reduced axonal caliber and structural changes in a rat model of Fragile X syndrome with a deletion of a K-Homology domain of Fmr1. Transl Psychiatry10, 280. 10.1038/s41398-020-00943-x (2020). PubMed PMC
Igarashi, K. M. et al. Parallel mitral and tufted cell pathways route distinct odor information to different targets in the olfactory cortex. J. Neurosci.32, 7970–7985. 10.1523/JNEUROSCI.0154-12.2012 (2012). PubMed PMC
Chen, F. et al. Cholecystokinin-expressing superficial tufted cells modulate odour representation in the olfactory bulb and olfactory behaviours. J. Physiol.602, 3519–3543. 10.1113/JP285837 (2024). PubMed
Sun, X., Liu, X., Starr, E. R. & Liu, S. CCKergic tufted cells differentially drive two anatomically segregated inhibitory circuits in the mouse olfactory bulb. J. Neurosci.40, 6189–6206. 10.1523/JNEUROSCI.0769-20.2020 (2020). PubMed PMC
Tonacci, A. et al. Olfaction in autism spectrum disorders: A systematic review. Child. Neuropsychol.23, 1–25. 10.1080/09297049.2015.1081678 (2017). PubMed
Friston, K. Prediction, perception and agency. Int. J. Psychophysiol.83, 248–252. 10.1016/j.ijpsycho.2011.11.014 (2012). PubMed PMC
Limongi, R., Tomio, A. & Ibanez, A. Dynamical predictions of insular hubs for social cognition and their application to stroke. Front. Behav. Neurosci.8, 380. 10.3389/fnbeh.2014.00380 (2014). PubMed PMC
Gonzalez-Gadea, M. L. et al. Predictive coding in autism spectrum disorder and attention deficit hyperactivity disorder. J. Neurophysiol.114, 2625–2636. 10.1152/jn.00543.2015 (2015). PubMed PMC
Bolis, D. & Schilbach, L. Observing and participating in social interactions: Action perception and action control across the autistic spectrum. Dev. Cogn. Neurosci.29, 168–175. 10.1016/j.dcn.2017.01.009 (2018). PubMed PMC
Thye, M. D., Bednarz, H. M., Herringshaw, A. J., Sartin, E. B. & Kana, R. K. The impact of atypical sensory processing on social impairments in autism spectrum disorder. Dev. Cogn. Neurosci.29, 151–167. 10.1016/j.dcn.2017.04.010 (2018). PubMed PMC
Brang, D. & Ramachandran, V. S. Olfactory bulb dysgenesis, mirror neuron system dysfunction, and autonomic dysregulation as the neural basis for autism. Med. Hypotheses74, 919–921. 10.1016/j.mehy.2008.11.048 (2010). PubMed
Bandini, L. G. et al. Food selectivity in children with autism spectrum disorders and typically developing children. J. Pediatr.157, 259–264. 10.1016/j.jpeds.2010.02.013 (2010). PubMed PMC
Raspa, M., Bailey, D. B., Bishop, E., Holiday, D. & Olmsted, M. Obesity, food selectivity, and physical activity in individuals with fragile X syndrome. Am. J. Intellect. Dev. Disabil115, 482–495. 10.1352/1944-7558-115.6.482 (2010). PubMed
Cermak, S. A., Curtin, C. & Bandini, L. G. Food selectivity and sensory sensitivity in children with autism spectrum disorders. J. Am. Diet. Assoc.110, 238–246. 10.1016/j.jada.2009.10.032 (2010). PubMed PMC