Acute Severe Heart Failure Reduces Heart Rate Variability: An Experimental Study in a Porcine Model
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
NHH, 00023884: IG180502, IG200505
Ministry of Health
PubMed
36613937
PubMed Central
PMC9820097
DOI
10.3390/ijms24010493
PII: ijms24010493
Knihovny.cz E-zdroje
- Klíčová slova
- acute heart failure, experimental model, heart rate variability, pig,
- MeSH
- funkce levé komory srdeční fyziologie MeSH
- hypoxie MeSH
- ischemická choroba srdeční * MeSH
- prasata MeSH
- srdeční frekvence fyziologie MeSH
- srdeční selhání * MeSH
- tepový objem MeSH
- zvířata MeSH
- Check Tag
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
There are substantial differences in autonomic nervous system activation among heart (cardiac) failure (CF) patients. The effect of acute CF on autonomic function has not been well explored. The aim of our study was to assess the effect of experimental acute CF on heart rate variability (HRV). Twenty-four female pigs with a mean body weight of 45 kg were used. Acute severe CF was induced by global myocardial hypoxia. In each subject, two 5-min electrocardiogram segments were analyzed and compared: before the induction of myocardial hypoxia and >60 min after the development of severe CF. HRV was assessed by time-domain, frequency-domain and nonlinear analytic methods. The induction of acute CF led to a significant decrease in cardiac output, left ventricular ejection fraction and an increase in heart rate. The development of acute CF was associated with a significant reduction in the standard deviation of intervals between normal beats (50.8 [20.5−88.1] ms versus 5.9 [2.4−11.7] ms, p < 0.001). Uniform HRV reduction was also observed in other time-domain and major nonlinear analytic methods. Similarly, frequency-domain HRV parameters were significantly changed. Acute severe CF induced by global myocardial hypoxia is associated with a significant reduction in HRV.
Department of Cardiology Na Homolce Hospital 150 30 Prague Czech Republic
Department of Physiology 1st Faculty of Medicine Charles University 128 00 Prague Czech Republic
Zobrazit více v PubMed
Azevedo E.R., Parker J.D. Parasympathetic control of cardiac sympathetic activity: Normal ventricular function versus congestive heart failure. Circulation. 1999;100:274–279. doi: 10.1161/01.CIR.100.3.274. PubMed DOI
Packer M. The neurohormonal hypothesis: A theory to explain the mechanism of disease progression in heart failure. J. Am. Coll. Cardiol. 1992;20:248–254. doi: 10.1016/0735-1097(92)90167-L. PubMed DOI
Swedberg K., Kjekshus J. CONSENSUS Trial Study Group. Effects of enalapril on mortality in severe congestive heart failure. Results of the Cooperative North Scandinavian Enalapril Survival Study (CONSENSUS) N. Engl. J. Med. 1987;316:1429–1435. PubMed
Packer M., Bristow M.R., Cohn J.N., Colucci W.S., Fowler M.B., Gilbert E.M., Shusterman N.H., U.S. Carvedilol Heart Failure Study Group The effect of carvedilol on morbidity and mortality in patients with chronic heart failure. N. Engl. J. Med. 1996;334:1349–1355. doi: 10.1056/NEJM199605233342101. PubMed DOI
Pitt B., Zannad F., Remme W.J., Cody R., Castaigne A., Perez A., Palensky J., Wittes J., Randomized Aldactone Evaluation Study Investigators The effect of spironolactone on morbidity and mortality in patients with severe heart failure. N. Engl. J. Med. 1999;341:709–717. doi: 10.1056/NEJM199909023411001. PubMed DOI
Spitaleri G., Lupón J., Domingo M., Santiago-Vacas E., Codina P., Zamora E., Cediel G., Santesmases J., Diez-Quevedo C., Troya M.I., et al. Mortality trends in an ambulatory multidisciplinary heart failure unit from 2001 to 2018. Sci. Rep. 2021;11:732. doi: 10.1038/s41598-020-79926-3. PubMed DOI PMC
Zipes D.P., Neuzil P., Theres H., Caraway D., Mann D.L., Mannheimer C., Van Buren P., Linde C., Linderoth B., Kueffer F., et al. Determining the Feasibility of Spinal Cord Neuromodulation for the Treatment of Chronic Systolic Heart Failure: The DEFEAT-HF Study. JACC Heart Fail. 2016;4:129–136. doi: 10.1016/j.jchf.2015.10.006. PubMed DOI
Zannad F., De Ferrari G.M., Tuinenburg A.E., Wright D., Brugada J., Butter C., Klein H., Stolen C., Meyer S., Stein K.M., et al. Chronic vagal stimulation for the treatment of low ejection fraction heart failure: Results of the NEural Cardiac TherApy foR Heart Failure (NECTAR-HF) randomized controlled trial. Eur. Heart J. 2015;36:425–433. doi: 10.1093/eurheartj/ehu345. PubMed DOI PMC
Gold M.R., Van Veldhuisen D.J., Hauptman P.J., Borggrefe M., Kubo S.H., Lieberman R.A., Milasinovic G., Berman B.J., Djordjevic S., Neelagaru S., et al. Vagus Nerve Stimulation for the Treatment of Heart Failure: The INOVATE-HF Trial. J. Am. Coll. Cardiol. 2016;68:149–158. doi: 10.1016/j.jacc.2016.03.525. PubMed DOI
Pearson M.J., Smart N.A. Exercise therapy and autonomic function in heart failure patients: A systematic review and meta-analysis. Heart Fail. Rev. 2018;23:91–108. doi: 10.1007/s10741-017-9662-z. PubMed DOI
Ozdemir M., Arslan U., Türkoğlu S., Balcioğlu S., Cengel A. Losartan improves heart rate variability and heart rate turbulence in heart failure due to ischemic cardiomyopathy. J. Card. Fail. 2007;13:812–817. doi: 10.1016/j.cardfail.2007.08.002. PubMed DOI
Pousset F., Copie X., Lechat P., Jaillon P., Boissel J.P., Hetzel M., Fillette F., Remme W., Guize L., Le Heuzey J.Y. Effects of bisoprolol on heart rate variability in heart failure. Am. J. Cardiol. 1996;77:612–617. doi: 10.1016/S0002-9149(97)89316-2. PubMed DOI
Fantoni C., Raffa S., Regoli F., Giraldi F., La Rovere M.T., Prentice J., Pastori F., Fratini S., Salerno-Uriarte J.A., Klein H.U., et al. Cardiac resynchronization therapy improves heart rate profile and heart rate variability of patients with moderate to severe heart failure. J. Am. Coll. Cardiol. 2005;46:1875–1882. doi: 10.1016/j.jacc.2005.06.081. PubMed DOI
Naar J., Jaye D., Neuzil P., Doskar P., Malek F., Linderoth B., Lind G., Stahlberg M. Acute effect of spinal cord stimulation on autonomic nervous system function in patients with heart failure. J. Appl. Biomed. 2021;19:133–141. doi: 10.32725/jab.2021.012. PubMed DOI
Ozdemir O., Alyan O., Kacmaz F., Kaptan Z., Ozbakir C., Geyik B., Cagirci G., Soylu M., Demir A.D. Evaluation of effects of intra aortic balloon counterpulsation on autonomic nervous system functions by heart rate variability analysis. Ann. Noninvasive Electrocardiol. 2007;12:38–43. doi: 10.1111/j.1542-474X.2007.00136.x. PubMed DOI PMC
Casolo G., Balli E., Taddei T., Amuhasi J., Gori C. Decreased spontaneous heart rate variability in congestive heart failure. Am. J. Cardiol. 1989;64:1162–1167. doi: 10.1016/0002-9149(89)90871-0. PubMed DOI
Hadase M., Azuma A., Zen K., Asada S., Kawasaki T., Kamitani T., Kawasaki S., Sugihara H., Matsubara H. Very low frequency power of heart rate variability is a powerful predictor of clinical prognosis in patients with congestive heart failure. Circ. J. 2004;68:343–347. doi: 10.1253/circj.68.343. PubMed DOI
Ponikowski P., Anker S.D., Chua T.P., Szelemej R., Piepoli M., Adamopoulos S., Webb-Peploe K., Harrington D., Banasiak W., Wrabec K., et al. Depressed heart rate variability as an independent predictor of death in chronic congestive heart failure secondary to ischemic or idiopathic dilated cardiomyopathy. Am. J. Cardiol. 1997;79:1645–1650. doi: 10.1016/S0002-9149(97)00215-4. PubMed DOI
Motte S., Mathieu M., Brimioulle S., Pensis A., Ray L., Ketelslegers J.M., Montano N., Naeije R., van de Borne P., Entee K.M. Respiratory-related heart rate variability in progressive experimental heart failure. Am. J. Physiol. Heart Circ. Physiol. 2005;289:H1729–H1735. doi: 10.1152/ajpheart.01129.2004. PubMed DOI
Zhou S.X., Lei J., Fang C., Zhang Y.L., Wang J.F. Ventricular electrophysiology in congestive heart failure and its correlation with heart rate variability and baroreflex sensitivity: A canine model study. Europace. 2009;11:245–251. doi: 10.1093/europace/eun383. PubMed DOI
Jarkovska D., Valesova L., Chvojka J., Benes J., Danihel V., Sviglerova J., Nalos L., Matejovic M., Stengl M. Heart-rate variability depression in porcine peritonitis-induced sepsis without organ failure. Exp. Biol. Med. 2017;242:1005–1012. doi: 10.1177/1535370217700521. PubMed DOI PMC
Jarkovska D., Valesova L., Chvojka J., Benes J., Sviglerova J., Florova B., Nalos L., Matejovic M., Stengl M. Heart Rate Variability in Porcine Progressive Peritonitis-Induced Sepsis. Front. Physiol. 2016;6:412. doi: 10.3389/fphys.2015.00412. PubMed DOI PMC
Salomão E., Jr., Otsuki D.A., Correa A.L., Fantoni D.T., dos Santos F., Irigoyen M.C., Auler J.O., Jr. Heart Rate Variability Analysis in an Experimental Model of Hemorrhagic Shock and Resuscitation in Pigs. PLoS ONE. 2015;10:e0134387. doi: 10.1371/journal.pone.0134387. PubMed DOI PMC
Casolo G.C., Stroder P., Sulla A., Chelucci A., Freni A., Zerauschek M. Heart rate variability and functional severity of congestive heart failure secondary to coronary artery disease. Eur. Heart J. 1995;16:360–367. doi: 10.1093/oxfordjournals.eurheartj.a060919. PubMed DOI
Calvert C.A., Wall M. Effect of severity of myocardial failure on heart rate variability in Doberman pinschers with and without echocardiographic evidence of dilated cardiomyopathy. J. Am. Vet. Med. Assoc. 2001;219:1084–1088. doi: 10.2460/javma.2001.219.1084. PubMed DOI
Billman G.E. The LF/HF ratio does not accurately measure cardiac sympatho-vagal balance. Front. Physiol. 2013;4:26. doi: 10.3389/fphys.2013.00026. PubMed DOI PMC
Hayano J., Yuda E. Pitfalls of assessment of autonomic function by heart rate variability. J. Physiol. Anthropol. 2019;38:3. doi: 10.1186/s40101-019-0193-2. PubMed DOI PMC
Shaffer F., Ginsberg J.P. An Overview of Heart Rate Variability Metrics and Norms. Front. Public Health. 2017;5:258. doi: 10.3389/fpubh.2017.00258. PubMed DOI PMC
Vaschillo E., Lehrer P., Rishe N., Konstantinov M. Heart rate variability biofeedback as a method for assessing baroreflex function: A preliminary study of resonance in the cardiovascular system. Appl. Psychophysiol. Biofeedback. 2002;27:1–27. doi: 10.1023/A:1014587304314. PubMed DOI
Taylor J.A., Carr D.L., Myers C.W., Eckberg D.L. Mechanisms underlying very-low-frequency RR-interval oscillations in humans. Circulation. 1998;98:547–555. doi: 10.1161/01.CIR.98.6.547. PubMed DOI
Botek M., Krejčí J., De Smet S., Gába A., McKune A.J. Heart rate variability and arterial oxygen saturation response during extreme normobaric hypoxia. Auton. Neurosci. 2015;190:40–45. doi: 10.1016/j.autneu.2015.04.001. PubMed DOI
Frazier S.K., Moser D.K., Stone K.S. Heart rate variability and hemodynamic alterations in canines with normal cardiac function during exposure to pressure support, continuous positive airway pressure, and a combination of pressure support and continuous positive airway pressure. Biol. Res. Nurs. 2001;2:167–174. doi: 10.1177/109980040100200302. PubMed DOI
Schipke J.D., Arnold G., Pelzer M. Effect of respiration rate on short-term heart rate variability. J. Clin. Basic Cardiol. 1999;2:92–95.
de Geus E.J.C., Gianaros P.J., Brindle R.C., Jennings J.R., Berntson G.G. Should heart rate variability be “corrected” for heart rate? Biological, quantitative, and interpretive considerations. Psychophysiology. 2019;56:e13287. doi: 10.1111/psyp.13287. PubMed DOI PMC
Koenig J., Thayer J.F. Sex differences in healthy human heart rate variability: A meta-analysis. Neurosci. Biobehav. Rev. 2016;64:288–310. doi: 10.1016/j.neubiorev.2016.03.007. PubMed DOI
Sammito S., Böckelmann I. Reference values for time- and frequency-domain heart rate variability measures. Heart Rhythm. 2016;13:1309–1316. doi: 10.1016/j.hrthm.2016.02.006. PubMed DOI
Ostadal P., Mlcek M., Kruger A., Hala P., Lacko S., Mates M., Vondrakova D., Svoboda T., Hrachovina M., Janotka M., et al. Increasing venoarterial extracorporeal membrane oxygenation flow negatively affects left ventricular performance in a porcine model of cardiogenic shock. J. Transl. Med. 2015;13:266. doi: 10.1186/s12967-015-0634-6. PubMed DOI PMC
Ostadal P., Mlcek M., Strunina S., Hrachovina M., Kruger A., Vondrakova D., Janotka M., Hala P., Kittnar O., Neuzil P. Novel porcine model of acute severe cardiogenic shock developed by upper-body hypoxia. Physiol. Res. 2016;65:711–715. doi: 10.33549/physiolres.933294. PubMed DOI
Lacko S., Mlcek M., Hala P., Popkova M., Janak D., Hrachovina M., Kudlicka J., Hrachovina V., Ostadal P., Kittnar O. Severe acute heart failure—experimental model with very low mortality. Physiol. Res. 2018;67:555–562. doi: 10.33549/physiolres.933774. PubMed DOI
Heart rate variability—Standards of measurement, physiological interpretation, and clinical use—Task Force of The European Society of Cardiology and The North American Society of Pacing and Electrophysiology. Eur. Heart J. 1996;17:354–381. doi: 10.1093/oxfordjournals.eurheartj.a014868. PubMed DOI