• This record comes from PubMed

Acute effect of spinal cord stimulation on autonomic nervous system function in patients with heart failure

. 2021 Sep ; 19 (3) : 133-141. [epub] 20210518

Language English Country Poland Media print-electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

AIMS: To test the hypothesis that spinal cord stimulation (SCS) acutely improves heart rate variability (HRV) and baroreceptor sensitivity (BRS) in patients with heart failure (HF). METHODS: SCS (15 minutes) was delivered in four different settings: 90% of maximal tolerated stimulation amplitude (MTA) targeting the T1-T4 spinal cord segments (SCS90T1-4), 60% of MTA (SCS60T1-4), 90% of MTA with cranial (SCS90CR) and caudal (SCS90CA) electrode configuration. HRV and BRS were recorded continuously and stimulation was compared to device off. RESULTS: Fifteen HF patients were included. SCS90T1-4 did not change the standard deviation of intervals between normal beats (SDNN, p = 0.90), BRS (p = 0.55) or other HRV parameters. In patients with baseline SDNN <50 ms, SCS90T1-4 significantly increased SDNN (p = 0.004). CONCLUSIONS: Acute SCS at 60-90% of MTA targeting upper thoracic spinal cord segments does not improve autonomic balance or baroreceptor sensitivity in unselected patients with heart failure but may improve HRV in patients with low SDNN.

See more in PubMed

Agostoni P, Cattadori G (2009). Noninvasive cardiac output measurement: A new tool in heart failure. Cardiology 114(4): 244-246. DOI: 10.1159/000232406. PubMed DOI

Anselmino M, Ravera L, De Luca A, Capriolo M, Bordese R, Trevi GP, Grimaldi R (2009). Spinal cord stimulation and 30-minute heart rate variability in refractory angina patients. Pacing Clin Electrophysiol 32(1): 37-42. DOI: 10.1111/j.1540-8159.2009.02174.x. PubMed DOI

Azevedo ER, Parker JD (1999). Parasympathetic control of cardiac sympathetic activity: normal ventricular function versus congestive heart failure. Circulation 100(3): 274-279. DOI: 10.1161/01.cir.100.3.274. PubMed DOI

Bernstein SA, Wong B, Vasquez C, Rosenberg SP, Rooke R, Kuznekoff LM, et al. (2012). Spinal cord stimulation protects against atrial fibrillation induced by tachypacing. Heart Rhythm 9(9): 1426-1433.e3. PubMed DOI

Cardinal R, Ardell JL, Linderoth B, Vermeulen M, Foreman RD, Armour JA (2004). Spinal cord activation differentially modulates ischaemic electrical responses to different stressors in canine ventricles. Auton Neurosci 111(1): 37-47. DOI: 10.1016/j.autneu.2004.02.005. PubMed DOI

Foreman RD, Linderoth B, Ardell JL, Barron KW, Chandler MJ, Hull SS, Jr., et al. (2000). Modulation of intrinsic cardiac neurons by spinal cord stimulation: implications for its therapeutic use in angina pectoris. Cardiovasc Res 47(2): 367-375. DOI: 10.1016/s0008-6363(00)00095-x. PubMed DOI

Goldstein DS, Bentho O, Park M-Y, Sharabi Y (2011). Low-frequency power of heart rate variability is not a measure of cardiac sympathetic tone but may be a measure of modulation of cardiac autonomic outflows by baroreflexes. Exp Physiol 96(12): 1255-1261. DOI: 10.1113/expphysiol.2010.056259. PubMed DOI

Hadase M, Azuma A, Zen K, Asada S, Kawasaki T, Kamitani T, et al. (2004). Very low frequency power of heart rate variability is a powerful predictor of clinical prognosis in patients with congestive heart failure. Circ J 68(4): 343-347. DOI: 10.1253/circj.68.343. PubMed DOI

Hayano J, Yuda E (2019). Pitfalls of assessment of autonomic function by heart rate variability. J Physiol Anthropol 38(1): 3. DOI: 10.1186/s40101-019-0193-2. PubMed DOI

Heart rate variability: standards of measurement, physiological interpretation, and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology (1996). Eur Heart J 17: 354-381.

Issa ZF, Zhou X, Ujhelyi MR, Rosenberger J, Bhakta D, Groh WJ, et al. (2005). Thoracic spinal cord stimulation reduces the risk of ischemic ventricular arrhythmias in a postinfarction heart failure canine model. Circulation 111(24): 3217-3720. DOI: 10.1161/CIRCULATIONAHA.104.507897. PubMed DOI

Jacobson AF, Senior R, Cerqueira MD, Wong ND, Thomas GS, Lopez VA, et al. (2010). Myocardial iodine-123 meta-iodobenzylguanidine imaging and cardiac events in heart failure. Results of the prospective ADMIRE-HF (AdreView Myocardial Imaging for Risk Evaluation in Heart Failure) study. J Am Coll Cardiol 55(20): 2212-2221. DOI: 10.1016/j.jacc.2010.01.014. PubMed DOI

La Rovere MT, Pinna GD, Raczak G (2008). Baroreflex sensitivity: measurement and clinical implications. Ann Noninvasive Electrocardiol 13(2): 191-207. DOI: 10.1111/j.1542-474X.2008.00219.x. PubMed DOI

Linderoth B, Foreman RD (1999). Physiology of spinal cord stimulation: review and update. Neuromodulation 2(3): 150-164. DOI: 10.1046/j.1525-1403.1999.00150.x. PubMed DOI

Liu Y, Yue W-S, Liao S-Y, Zhang Y, Au K-W, Shuto C, et al. (2012). Thoracic spinal cord stimulation improves cardiac contractile function and myocardial oxygen consumption in a porcine model of ischemic heart failure. J Cardiovasc Electrophysiol 23(5): 534-540. DOI: 10.1111/j.1540-8167.2011.02230.x. PubMed DOI

Lopshire JC, Zipes DP (2014). Spinal cord stimulation for heart failure: preclinical studies to determine optimal stimulation parameters for clinical efficacy. J Cardiovasc Transl Res 7(3): 321-329. DOI: 10.1007/s12265-014-9547-7. PubMed DOI

Lopshire JC, Zhou X, Dusa C, Ueyama T, Rosenberger J, Courtney N, et al. (2009). Spinal cord stimulation improves ventricular function and reduces ventricular arrhythmias in a canine postinfarction heart failure model. Circulation 120(4): 286-294. DOI: 10.1161/CIRCULATIONAHA.108.812412. PubMed DOI

Moore R, Groves D, Nolan J, Scutt D, Pumprla J, Chester MR (2004). Altered short term heart rate variability with spinal cord stimulation in chronic refractory angina: evidence for the presence of procedure related cardiac sympathetic blockade. Heart 90(2): 211-212. DOI: 10.1136/hrt.2002.002998. PubMed DOI

Mortara A, La Rovere MT, Pinna GD, Prpa A, Maestri R, Febo O, et al. (1997). Arterial baroreflex modulation of heart rate in chronic heart failure: clinical and hemodynamic correlates and prognostic implications. Circulation 96(10): 3450-3458. DOI: 10.1161/01.cir.96.10.3450. PubMed DOI

Naar J, Jaye D, Linde C, Neužil P, Doškář P, Málek F, et al. (2017a). Effects of Spinal Cord Stimulation on Cardiac Sympathetic Nerve Activity in Patients with Heart Failure. Pacing Clin Electrophysiol 40(5): 504-513. DOI: 10.1111/pace.13050. PubMed DOI

Naar J, Jaye D, Linde C, Neužil P, Doškář P, Málek F, et al. (2017b). Spinal cord stimulation in heart failure: effect on disease-associated biomarkers. Eur J Heart Fail 19(2): 283-286. DOI: 10.1002/ejhf.702. PubMed DOI

Nakata T, Nakajima K, Yamashina S, Yamada T, Momose M, Kasama S, et al. (2013). A pooled analysis of multicenter cohort studies of (123) I-mIBG imaging of sympathetic innervation for assessment of long-term prognosis in heart failure. JACC Cardiovasc Imaging 6(7): 772-784. DOI: 10.1016/j.jcmg.2013.02.007. PubMed DOI

Odenstedt J, Linderoth B, Bergfeldt L, Ekre O, Grip L, Mannheimer C, Andrell P (2014). Spinal cord stimulation effects on myocardial ischemia, infarct size, ventricular arrhythmia, and noninvasive electrophysiology in a porcine ischemia-reperfusion model. Heart Rhythm 8(6): 892-898. DOI: 10.1016/j.hrthm.2011.01.029. PubMed DOI

Osterziel KJ, Hänlein D, Willenbrock R, Eichhorn C, Luft F, Dietz R (1995). Baroreflex sensitivity and cardiovascular mortality in patients with mild to moderate heart failure. Br Heart J 73(6): 517-522. DOI: 10.1136/hrt.73.6.517. PubMed DOI

Packer M (1992). The neurohormonal hypothesis: a theory to explain the mechanism of disease progression in heart failure. J Am Coll Cardiol 20(1): 248-254. DOI: 10.1016/0735-1097(92)90167-l. PubMed DOI

Parlow J, Viale JP, Annat G, Hughson R, Quintin L (1995). Spontaneous cardiac baroreflex in humans. Comparison with drug-induced responses. Hypertension 25(5): 1058-1068. DOI: 10.1161/01.hyp.25.5.1058. PubMed DOI

Rahman F, Pechnik S, Gross D, Sewell L, Goldstein DS (2011). Low frequency power of heart rate variability reflects baroreflex function, not cardiac sympathetic innervation. Clin Auton Res 21(3): 133-141. DOI: 10.1007/s10286-010-0098-y. PubMed DOI

Simpson EL, Duenas A, Holmes MW, Papaioannou D, Chilcott J (2009). Spinal cord stimulation for chronic pain of neuropathic or ischaemic origin: systematic review and economic evaluation. Health Technol Assess 13(17): iii, ix-x, 1-154. DOI: 10.3310/hta13170. PubMed DOI

Tse H-F, Turner S, Sanders P, Okuyama Y, Fujiu K, Cheung C-W, et al. (2015). Thoracic Spinal Cord Stimulation for Heart Failure as a Restorative Treatment (SCS HEART study): first-in-man experience. Heart Rhythm 12(3): 588-595. DOI: 10.1016/j.hrthm.2014.12.014. PubMed DOI

Wang W, Chen JS, Zucker IH (1990). Carotid sinus baroreceptor sensitivity in experimental heart failure. Circulation 81(6): 1959-1966. DOI: 10.1161/01.cir.81.6.1959. PubMed DOI

Wang Y-P, Cheng Y-J, Huang C-L (2004). Spontaneous baroreflex measurement in the assessment of cardiac vagal control. Clin Auton Res 14(3): 189-193. DOI: 10.1007/s10286-004-0192-0. PubMed DOI

Zipes DP, Neuzil P, Theres H, Caraway D, Mann DL, Mannheimer C, et al. (2016). Determining the Feasibility of Spinal Cord Neuromodulation for the Treatment of Chronic Systolic Heart Failure: The DEFEAT-HF Study. JACC Heart Fail 4(2): 129-136. DOI: 10.1016/j.jchf.2015.10.006. PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...