Heart-rate variability depression in porcine peritonitis-induced sepsis without organ failure
Jazyk angličtina Země Švýcarsko Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
28440737
PubMed Central
PMC5407591
DOI
10.1177/1535370217700521
Knihovny.cz E-zdroje
- Klíčová slova
- Sepsis, experimental model, heart-rate variability, pig,
- MeSH
- modely nemocí na zvířatech MeSH
- peritonitida komplikace MeSH
- sepse patologie MeSH
- srdeční frekvence * MeSH
- Sus scrofa MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Depression of heart-rate variability (HRV) in conditions of systemic inflammation has been shown in both patients and experimental animal models and HRV has been suggested as an early indicator of sepsis. The sensitivity of HRV-derived parameters to the severity of sepsis, however, remains unclear. In this study we modified the clinically relevant porcine model of peritonitis-induced sepsis in order to avoid the development of organ failure and to test the sensitivity of HRV to such non-severe conditions. In 11 anesthetized, mechanically ventilated and instrumented domestic pigs of both sexes, sepsis was induced by fecal peritonitis. The dose of feces was adjusted and antibiotic therapy was administered to avoid multiorgan failure. Experimental subjects were screened for 40 h from the induction of sepsis. In all septic animals, sepsis with hyperdynamic circulation and increased plasma levels of inflammatory mediators developed within 12 h from the induction of peritonitis. The sepsis did not progress to multiorgan failure and there was no spontaneous death during the experiment despite a modest requirement for vasopressor therapy in most animals (9/11). A pronounced reduction of HRV and elevation of heart rate developed quickly (within 5 h, time constant of 1.97 ± 0.80 h for HRV parameter TINN) upon the induction of sepsis and were maintained throughout the experiment. The frequency domain analysis revealed a decrease in the high-frequency component. The reduction of HRV parameters and elevation of heart rate preceded sepsis-associated hemodynamic changes by several hours (time constant of 11.28 ± 2.07 h for systemic vascular resistance decline). A pronounced and fast reduction of HRV occurred in the setting of a moderate experimental porcine sepsis without organ failure. Inhibition of parasympathetic cardiac signaling probably represents the main mechanism of HRV reduction in sepsis. The sensitivity of HRV to systemic inflammation may allow early detection of a moderate sepsis without organ failure. Impact statement A pronounced and fast reduction of heart-rate variability occurred in the setting of a moderate experimental porcine sepsis without organ failure. Dominant reduction of heart-rate variability was found in the high-frequency band indicating inhibition of parasympathetic cardiac signaling as the main mechanism of heart-rate variability reduction. The sensitivity of heart-rate variability to systemic inflammation may contribute to an early detection of moderate sepsis without organ failure.
1st Medical Department Faculty of Medicine in Pilsen Charles University 30460 Pilsen Czech Republic
Biomedical Center Faculty of Medicine in Pilsen Charles University 32300 Pilsen Czech Republic
Zobrazit více v PubMed
Adhikari NK, Fowler RA, Bhagwanjee S, Rubenfeld GD. Critical care and the global burden of critical illness in adults. Lancet 2010; 376: 1339–46. PubMed PMC
Martin GS, Mannino DM, Eaton S, Moss M. The epidemiology of sepsis in the United States from 1979 through 2000. N Engl J Med 2003; 348: 1546–54. PubMed
Mouncey PR, Osborn TM, Power GS, Harrison DA, Sadique MZ, Grieve RD, Jahan R, Harvey SE, Bell D, Bion JF, Coats TJ, Singer M, Young JD, Rowan KM. ProMISe Trial Investigators. Trial of early, goal-directed resuscitation for septic shock. N Engl J Med 2015; 372: 1301–11. PubMed
Sartelli M, Catena F, Di Saverio S, Ansaloni L, Malangoni M, Moore EE, Moore FA, Ivatury R, Coimbra R, Leppaniemi A, Biffl W, Kluger Y, Fraga GP, Ordonez CA, Marwah S, Gerych I, Lee JG, Tranà C, Coccolini F, Corradetti F, Kirkby-Bott J. Current concept of abdominal sepsis: WSES position paper. World J Emerg Surg WJES 2014; 9: 22–22. PubMed PMC
Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, Bellomo R, Bernard GR, Chiche JD, Coopersmith CM, Hotchkiss RS, Levy MM, Marshall JC, Martin GS, Opal SM, Rubenfeld GD, van der Poll T, Vincent JL, Angus DC. The third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA 2016; 315: 801–10. PubMed PMC
Barnaby D, Ferrick K, Kaplan DT, Shah S, Bijur P, Gallagher EJ. Heart rate variability in emergency department patients with sepsis. Acad Emerg Med 2002; 9: 661–70. PubMed
Bohanon FJ, Mrazek AA, Shabana MT, Mims S, Radhakrishnan GL, Kramer GC, Radhakrishnan RS. Heart rate variability analysis is more sensitive at identifying neonatal sepsis than conventional vital signs. Am J Surg 2015; 210: 661–7. PubMed PMC
Godin PJ, Fleisher LA, Eidsath A, Vandivier RW, Preas HL, Banks SM, Buchman TG, Suffredini AF. Experimental human endotoxemia increases cardiac regularity: results from a prospective, randomized, crossover trial. Crit Care Med 1996; 24: 1117–24. PubMed
Griffin MP, Lake DE, Bissonette EA, Harrell FE, Jr, O'Shea TM, Moorman JR. Heart rate characteristics: novel physiomarkers to predict neonatal infection and death. Pediatrics 2005; 116: 1070–74. PubMed
Korach M, Sharshar T, Jarrin I, Fouillot JP, Raphaël JC, Gajdos P, Annane D. Cardiac variability in critically ill adults: influence of sepsis. Crit Care Med 2001; 29: 1380–85. PubMed
Jarkovska D, Valesova L, Chvojka J, Benes J, Sviglerova J, Florova B, Nalos L, Matejovic M, Stengl M. Heart rate variability in porcine progressive peritonitis-induced sepsis. Front Physiol 2016; 6: 412–412. PubMed PMC
Pancoto JA, Corrêa PB, Oliveira-Pelegrin GR, Rocha MJ. Autonomic dysfunction in experimental sepsis induced by cecal ligation and puncture. Auton Neurosci Basic Clin 2008; 138: 57–63. PubMed
Setoguchi D, Yatsuki H, Sadahiro T, Nakamura M, Hirayama Y, Watanabe E, Tateishi Y, Oda S. Effects of a peripheral cholinesterase inhibitor on cytokine production and autonomic nervous activity in a rat model of sepsis. Cytokine 2012; 57: 238–44. PubMed
Ahmad S, Ramsay T, Huebsch L, Flanagan S, McDiarmid S, Batkin I, McIntyre L, Sundaresan SR, Maziak DE, Shamji FM, Hebert P, Fergusson D, Tinmouth A, Seely AJ. Continuous multi-parameter heart rate variability analysis heralds onset of sepsis in adults. PLoS One 2009; 4: e6642–e6642. PubMed PMC
Chen W-L, Kuo C-D. Characteristics of heart rate variability can predict impending septic shock in emergency department patients with sepsis. Acad Emerg Med 2007; 14: 392–7. PubMed
Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Heart rate variability: standards of measurement, physiological interpretation and clinical use. Circulation 1996; 93: 1043–65. PubMed
Lomb NR. Least-squares frequency analysis of unequally spaced data. Astrophys Space Sci 1976; 39: 447–62.
Scargle JD. Studies in astronomical time series analysis. II – Statistical aspects of spectral analysis of unevenly spaced data. Astrophys J 1982; 263: 835–53.
Vincent JL, de Mendonça A, Cantraine F, Moreno R, Takala J, Suter PM, Sprung CL, Colardyn F, Blecher S. Use of the SOFA score to assess the incidence of organ dysfunction/failure in intensive care units: results of a multicenter, prospective study. Working group on ‘sepsis-related problems’ of the European Society of Intensive Care Medicine. Crit Care Med 1998; 26: 1793–1800. PubMed
Dellinger RP, Levy MM, Rhodes A, Annane D, Gerlach H, Opal SM, Sevransky JE, Sprung CL, Douglas IS, Jaeschke R, Osborn TM, Nunnally ME, Townsend SR, Reinhart K, Kleinpell RM, Angus DC, Deutschman CS, Machado FR, Rubenfeld GD, Webb SA, Beale RJ, Vincent JL, Moreno R. Surviving Sepsis Campaign Guidelines Committee including the Pediatric Subgroup. Surviving sepsis campaign: international guidelines for management of severe sepsis and septic shock: 2012. Crit Care Med 2013; 41: 580–637. PubMed
Corrêa TD, Vuda M, Takala J, Djafarzadeh S, Silva E, Jakob SM. Increasing mean arterial blood pressure in sepsis: effects on fluid balance, vasopressor load and renal function. Crit Care Lond Engl 2013; 17: R21–R21. PubMed PMC
Levy B. Epinephrine in septic shock: Dr. Jekyll or Mr. Hyde? Crit Care Med 2003; 31: 1866–7. PubMed
Tracey KJ. Physiology and immunology of the cholinergic antiinflammatory pathway. J Clin Invest 2007; 117: 289–96. PubMed PMC
Borovikova LV, Ivanova S, Zhang M, Yang H, Botchkina GI, Watkins LR, Wang H, Abumrad N, Eaton JW, Tracey KJ. Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature 2000; 405: 458–62. PubMed
Sacha J. Interaction between heart rate and heart rate variability. Ann Noninvasive Electrocardiol 2014; 19: 207–16. PubMed PMC
Griffin MP, Lake DE, O'Shea TM, Moorman JR. Heart rate characteristics and clinical signs in neonatal sepsis. Pediatr Res 2007; 61: 222–27. PubMed
Moorman JR, Carlo WA, Kattwinkel J, Schelonka RL, Porcelli PJ, Navarrete CT, Bancalari E, Aschner JL, Whit Walker M, Perez JA, Palmer C, Stukenborg GJ, Lake DE, Michael O'Shea T. Mortality reduction by heart rate characteristic monitoring in very low birth weight neonates: a randomized trial. J Pediatr 2011; 159: 900–6.e1. PubMed PMC
Fairchild KD, Schelonka RL, Kaufman DA, Carlo WA, Kattwinkel J, Porcelli PJ, Navarrete CT, Bancalari E, Aschner JL, Walker MW, Perez JA, Palmer C, Lake DE, O'Shea TM, Moorman JR. Septicemia mortality reduction in neonates in a heart rate characteristics monitoring trial. Pediatr Res 2013; 74: 570–75. PubMed PMC
Tambuyzer T, De Waele T, Chiers K, Berckmans D, Goddeeris BM, Aerts JM. Interleukin-6 dynamics as a basis for an early-warning monitor for sepsis and inflammation in individual pigs. Res Vet Sci 2014; 96: 460–63. PubMed
Gao J, Gurbaxani BM, Hu J, Heilman KJ, Emanuele Ii VA, Lewis GF, Davila M, Unger ER, Lin JM. Multiscale analysis of heart rate variability in non-stationary environments. Front Physiol 2013; 4: 119–119. PubMed PMC
Martelli D, McKinley MJ, McAllen RM. The cholinergic anti-inflammatory pathway: a critical review. Auton Neurosci Basic Clin 2014; 182: 65–9. PubMed
Acute Severe Heart Failure Reduces Heart Rate Variability: An Experimental Study in a Porcine Model