Programmed DNA elimination drives rapid genomic innovation in two thirds of all bird species
Status In-Process Language English Country United States Media electronic
Document type Journal Article, Preprint
Grant support
K99 HG014014
NHGRI NIH HHS - United States
PubMed
40791346
PubMed Central
PMC12338730
DOI
10.1101/2025.07.16.664580
PII: 2025.07.16.664580
Knihovny.cz E-resources
- Publication type
- Journal Article MeSH
- Preprint MeSH
Bird genomes are among the most stable in terms of synteny and gene content across vertebrates. However, germline-restricted chromosomes (GRCs) represent a striking exception where programmed DNA elimination confines large-scale genomic changes to the germline. GRCs are known to occur in songbirds (oscines), but have been studied only in a few species of Passerides such as the zebra finch, the key model for passerine genomics. Their presence and evolutionary dynamics in most major passerine lineages remain largely unexplored, with suboscines entirely unexamined by cytogenetic or genomic methods. Here, we present the most comprehensive comparative analysis of GRCs to date, spanning 44 million years of passerine evolution. By generating the first germline reference genomes of an oscine and a suboscine, 22 novel germline draft genomes spanning nearly all major passerine lineages and a germline draft genome of a parrot outgroup, we show that the GRC is likely present in 6,700 passerine species. Our results reveal that the GRC evolves rapidly and distinctly from the standard A chromosomes (autosomes and sex chromosomes), yet retains functionally important, selectively maintained genes. We observed gene and repeat turnover occuring orders of magnitude faster than on the A chromosomes. Some GRC genes, such as cpeb1 and pim1, are widespread from an ancient duplication. In contrast, other GRC genes, like mfsd2b and bmp15, have been independently duplicated onto the GRC multiple times, suggesting adaptive constraints. The discovery of zglp1 on the zebra finch GRC, initially copied from chromosome 30 and subsequently lost from it, indicates functional replacement, where the GRC permits gene loss from the standard genome. As the GRC harbors the only zglp1 copy in most of the ~4000 Passerides species, GRC loss would compromise essential germline functions. Our findings establish the GRC as a genomic innovator driving rapid germline evolution. This fact highlights its evolutionary significance for passerine diversification and suggests that programmed DNA elimination may be an overlooked yet phylogenetically widespread mechanism in many understudied animal lineages.
Australian National Wildlife Collection National Research Collections Australia CSIRO Australia
Bonn Institute for Organismal Biology Animal Biodiversity University of Bonn Germany
Bragato Research Institute Lincoln New Zealand
Department of Behavioural Neurobiology Max Planck Institute for Biological Intelligence Germany
Department of Bioinformatics and Genetics Swedish Museum of Natural History Sweden
Department of Biological Sciences Macquarie University Australia
Department of Biology and Museum of Southwestern Biology University of New Mexico USA
Department of Biology Duke University USA
Department of Biosciences University of Oslo Norway
Department of Ecology and Genetics Uppsala University Sweden
Department of Ornithology Max Planck Institute for Biological Intelligence Germany
Department of Zoology Faculty of Science Charles University Czech Republic
German Centre for Integrative Biodiversity Research Halle Jena Leipzig Leipzig 04103 Germany
Institute of Cytology and Genetics Russian Academy of Sciences Russia
Institute of Vertebrate Biology Czech Academy of Sciences Czech Republic
Instituto de Ciências Exatas e Naturais Universidade Federal do Pará Belém PA Brazil
Laboratory of Neurogenetics of Language The Rockefeller University USA
Natural History Museum of Denmark University of Copenhagen Denmark
Novosibirsk State University Russia
School of Biological Sciences University of Auckland New Zealand
School of Biological Sciences University of East Anglia UK
Seção de Meio Ambiente Instituto Evandro Chagas Ananindeua PA Brazil
State Scientific Research Institute Nature Research Centre Vilnius Lithuania
See more in PubMed
Asalone Kathryn C, Takkar Ajuni K, Saldanha Colin J, and Bracht John R. 2021. ‘A Transcriptomic Pipeline Adapted for Genomic Sequence Discovery of Germline-Restricted Sequence in Zebra Finch, PubMed DOI PMC
Biederman Michelle K., Nelson Megan M., Asalone Kathryn C., Pedersen Alyssa L., Saldanha Colin J., and Bracht John R.. 2018. ‘Discovery of the First Germline-Restricted Gene by Subtractive Transcriptomic Analysis in the Zebra Finch, Taeniopygia Guttata’. Current Biology 28 (10): 1620–1627.e5. 10.1016/j.cub.2018.03.067. PubMed DOI PMC
Bolger Anthony M., Lohse Marc, and Usadel Bjoern. 2014. ‘Trimmomatic: A Flexible Trimmer for Illumina Sequence Data’. Bioinformatics 30 (15): 2114–20. 10.1093/bioinformatics/btu170. PubMed DOI PMC
Borodin Pavel, Chen Augustin, Forstmeier Wolfgang, et al. 2022. ‘Mendelian Nightmares: The Germline-Restricted Chromosome of Songbirds’. Chromosome Research 30 (2–3): 255–72. 10.1007/s10577-022-09688-3. PubMed DOI PMC
Bravo Gustavo A., Schmitt C. Jonathan, and Edwards Scott V.. 2021. ‘What Have We Learned from the First 500 Avian Genomes?’ Annual Review of Ecology, Evolution, and Systematics 52 (1): 611–39. 10.1146/annurev-ecolsys-012121-085928. DOI
Buchfink Benjamin, Reuter Klaus, and Drost Hajk-Georg. 2021. ‘Sensitive Protein Alignments at Tree-of-Life Scale Using DIAMOND’. Nature Methods 18 (4): 366–68. 10.1038/s41592-021-01101-x. PubMed DOI PMC
Cabanettes Floréal, and Klopp Christophe. 2018. ‘D-GENIES: Dot Plot Large Genomes in an Interactive, Efficient and Simple Way’. PeerJ 6 (June): e4958. 10.7717/peerj.4958. PubMed DOI PMC
Cheng Haoyu, Asri Mobin, Lucas Julian, Koren Sergey, and Li Heng. 2024. ‘Scalable Telomere-to-Telomere Assembly for Diploid and Polyploid Genomes with Double Graph’. Nature Methods 21 (6): 967–70. 10.1038/s41592-024-02269-8. PubMed DOI PMC
Cracraft J. 2014. ‘Avian Higher-Level Relationships and Classification: Passeriformes’. In The Howard and Moore Complete Checklist of the Birds of the World., 4th ed., vol. 2. Dickinson E.C. and Christidis L. (Eds). Aves Press.
Dainat Jacques, Cannoodt Robrecht, Soares André, et al. 2025. NBISweden/AGAT:AGAT v1.5.0. V. v1.5.0. Zenodo, released July 3. 10.5281/ZENODO.3552717. DOI
Dedukh Dmitrij, Malinovskaya Lyubov, Kauzál Ondřej, et al. 2025. ‘Mechanisms and Timing of Programmed DNA Elimination in Songbirds’. DOI
Del Priore, Lucía, and Pigozzi María Inés. 2014. ‘Histone Modifications Related to Chromosome Silencing and Elimination during Male Meiosis in Bengalese Finch’. Chromosoma 123 (3): 293–302. 10.1007/s00412-014-0451-3. PubMed DOI
Drummond A. J., Ashton B., Cheung M., et al. 2009. ‘Geneious v. 4.8. 5 Biomatters Ltd’. Aukland, New Zealand.
Fu Limin, Niu Beifang, Zhu Zhengwei, Wu Sitao, and Li Weizhong. 2012. ‘CD-HIT: Accelerated for Clustering the next-Generation Sequencing Data’. Bioinformatics 28 (23): 3150–52. 10.1093/bioinformatics/bts565. PubMed DOI PMC
Gill F, Donsker D, and Rasmussen P. 2025. IOC World Bird List (V15.1). https://www.worldbirdnames.org.
Gu Zuguang, Gu Lei, Eils Roland, Schlesner Matthias, and Brors Benedikt. 2014. ‘ PubMed DOI
Hahn Christoph, Bachmann Lutz, and Chevreux Bastien. 2013. ‘Reconstructing Mitochondrial Genomes Directly from Genomic Next-Generation Sequencing Reads—a Baiting and Iterative Mapping Approach’. Nucleic Acids Research 41 (13): e129–e129. 10.1093/nar/gkt371. PubMed DOI PMC
Hodson Christina N., Jaron Kamil S., Gerbi Susan, and Ross Laura. 2022. ‘Gene-Rich Germline-Restricted Chromosomes in Black-Winged Fungus Gnats Evolved through Hybridization’. PLOS Biology 20 (2): e3001559. 10.1371/journal.pbio.3001559. PubMed DOI PMC
Holst Felix, Bolger Anthony, Günther Christopher, et al. 2023. ‘Helixer– DOI
Itoh Yuichiro, Kampf Kathy, Pigozzi María Inés, and Arnold Arthur P.. 2009. ‘Molecular Cloning and Characterization of the Germline-Restricted Chromosome Sequence in the Zebra Finch’. Chromosoma 118 (4): 527–36. 10.1007/s00412-009-0216-6. PubMed DOI PMC
Johnson Pokorná, Martina, and Reifová Radka. 2021. ‘Evolution of B Chromosomes: From Dispensable Parasitic Chromosomes to Essential Genomic Players’. Frontiers in Genetics 12: 727570. 10.3389/fgene.2021.727570. PubMed DOI PMC
Katoh K., and Standley D. M.. 2013. ‘MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability’. Molecular Biology and Evolution 30 (4): 772–80. 10.1093/molbev/mst010. PubMed DOI PMC
Keilwagen Jens, Hartung Frank, and Grau Jan. ‘GeMoMa: Homology-Based Gene Prediction Utilizing Intron Position Conservation and RNA-Seq Data’. 2019. In Methods in Molecular Biology.Springer; New York. 10.1007/978-1-4939-9173-0_9. PubMed DOI
Kinsella Cormac M., Ruiz-Ruano Francisco J., Dion-Côte Anne-Marie, et al. 2019. ‘Programmed DNA Elimination of Germline Development Genes in Songbirds’. Nature Communications 10 (1): 5468. 10.1038/s41467-019-13427-4. PubMed DOI PMC
Li Heng. 2018. ‘Minimap2: Pairwise Alignment for Nucleotide Sequences’. Bioinformatics 34 (18): 3094–100. 10.1093/bioinformatics/bty191. PubMed DOI PMC
Marlétaz Ferdinand, Timoshevskaya Nataliya, Timoshevskiy Vladimir A., et al. 2024. ‘The Hagfish Genome and the Evolution of Vertebrates’. Nature 627 (8005): 811–20. 10.1038/s41586-024-07070-3. PubMed DOI PMC
Minh Bui Quang, Schmidt Heiko A, Chernomor Olga, et al. 2020. ‘IQ-TREE 2: New Models and Efficient Methods for Phylogenetic Inference in the Genomic Era’. Molecular Biology and Evolution 37 (5): 1530–34. 10.1093/molbev/msaa015. PubMed DOI PMC
Mueller Jakob C, Schlebusch Stephen A, Pei Yifan, et al. 2023. ‘Micro Germline-Restricted Chromosome in Blue Tits: Evidence for Meiotic Functions’. Molecular Biology and Evolution 40 (5): msad096. 10.1093/molbev/msad096. PubMed DOI PMC
Nagaoka So I., Nakaki Fumio, Miyauchi Hidetaka, et al. 2020. ‘ZGLP1 Is a Determinant for the Oogenic Fate in Mice’. Science 367 (6482): eaaw4115. 10.1126/science.aaw4115. PubMed DOI
Oliveros Carl H., Field Daniel J., Ksepka Daniel T., et al. 2019. ‘Earth History and the Passerine Superradiation’. Proceedings of the National Academy of Sciences 116 (16): 7916–25. 10.1073/pnas.1813206116. PubMed DOI PMC
Ortiz Edgardo M., Höwener Alina, Shigita Gentaro, et al. 2023. ‘A Novel Phylogenomics Pipeline Reveals Complex Pattern of Reticulate Evolution in Cucurbitales’. DOI
Pei Yifan, Forstmeier Wolfgang, Ruiz-Ruano Francisco J., et al. 2022. ‘Occasional Paternal Inheritance of the Germline-Restricted Chromosome in Songbirds’. Proceedings of the National Academy of Sciences 119 (4): e2103960119. 10.1073/pnas.2103960119. PubMed DOI PMC
Peona Valentina, Blom Mozes P. K., Frankl-Vilches Carolina, et al. 2022. ‘The Hidden Structural Variability in Avian Genomes’. DOI
Peona Valentina, Palacios-Gimenez Octavio M., Blommaert Julie, et al. 2021. ‘The Avian W Chromosome Is a Refugium for Endogenous Retroviruses with Likely Effects on Female-Biased Mutational Load and Genetic Incompatibilities’. Philosophical Transactions of the Royal Society B: Biological Sciences 376 (1833): 20200186. 10.1098/rstb.2020.0186. PubMed DOI PMC
Löytynoja Ari. ‘Phylogeny-Aware Alignment with PRANK’. 2014. In Methods in Molecular Biology, by. Humana Press. 10.1007/978-1-62703-646-7_10. PubMed DOI
Pigozzi M. I., and Solari A. J.. 1998. ‘Germ Cell Restriction and Regular Transmission of an Accessory Chromosome That Mimics a Sex Body in the Zebra Finch, Taeniopygia Guttata’. Chromosome Research 6 (2): 105–13. 10.1023/A:1009234912307. PubMed DOI
Quigley Sarah, Damas Joana, Larkin Denis M, and Farré Marta. 2023. ‘syntenyPlotteR: A User-Friendly R Package to Visualize Genome Synteny, Ideal for Both Experienced and Novice Bioinformaticians’. Bioinformatics Advances 3 (1). 10.1093/bioadv/vbad161. PubMed DOI PMC
Rambaut Andrew. 2018. ‘FigTree v1.4.5’. http://tree.bio.ed.ac.uk/software/figtree/.
Rhie Arang, Walenz Brian P., Koren Sergey, and Phillippy Adam M.. 2020. ‘Merqury: Reference-Free Quality, Completeness, and Phasing Assessment for Genome Assemblies’. Genome Biology 21 (1). 10.1186/s13059-020-02134-9. PubMed DOI PMC
Ruiz-Ruano Francisco J., Navarro-Domíguez Beatriz, López-León María Dolores, Cabrero Josefa, and Camacho Juan Pedro M.. 2019. ‘Evolutionary Success of a Parasitic B Chromosome Rests on Gene Content’. DOI
Schlebusch Stephen A., Rídl Jakub, Poignet Manon, et al. 2023. ‘Rapid Gene Content Turnover on the Germline-Restricted Chromosome in Songbirds’. Nature Communications 14 (1): 4579. 10.1038/s41467-023-40308-8. PubMed DOI PMC
Sela Itamar, Ashkenazy Haim, Katoh Kazutaka, and Pupko Tal. 2015. ‘GUIDANCE2: Accurate Detection of Unreliable Alignment Regions Accounting for the Uncertainty of Multiple Parameters’. Nucleic Acids Research 43 (W1): W7–14. 10.1093/nar/gkv318. PubMed DOI PMC
Smith Jeramiah J., Timoshevskaya Nataliya, Ye Chengxi, et al. 2018. ‘The Sea Lamprey Germline Genome Provides Insights into Programmed Genome Rearrangement and Vertebrate Evolution’. Nature Genetics 50 (2): 270–77. 10.1038/s41588-017-0036-1. PubMed DOI PMC
Smith Jeramiah J., Timoshevskiy Vladimir A., and Saraceno Cody. 2021. ‘Programmed DNA Elimination in Vertebrates’. Annual Review of Animal Biosciences 9 (1): 173–201. 10.1146/annurev-animal-061220-023220. PubMed DOI PMC
Sotelo-Muñoz Manuelita, Poignet Manon, Albrecht Tomáš, et al. 2022. ‘Germline-Restricted Chromosome Shows Remarkable Variation in Size among Closely Related Passerine Species’. Chromosoma 131 (1–2): 77–86. 10.1007/s00412-022-00771-6. PubMed DOI
Stamatakis Alexandros. 2014. ‘RAxML Version 8: A Tool for Phylogenetic Analysis and Post-Analysis of Large Phylogenies’. Bioinformatics 30 (9): 1312–13. 10.1093/bioinformatics/btu033. PubMed DOI PMC
Sweeten Alexander P, Schatz Michael C, and Phillippy Adam M. 2024. ‘ModDotPlot—Rapid and Interactive Visualization of Tandem Repeats’. Bioinformatics 40 (8). 10.1093/bioinformatics/btae493. PubMed DOI PMC
Timoshevskaya Nataliya, Eşkut Kaan İ., Timoshevskiy Vladimir A., et al. 2023. ‘An Improved Germline Genome Assembly for the Sea Lamprey Petromyzon Marinus Illuminates the Evolution of Germline-Specific Chromosomes’. Cell Reports 42 (3): 112263. 10.1016/j.celrep.2023.112263. PubMed DOI PMC
Torgasheva Anna A., Malinovskaya Lyubov P., Zadesenets Kira S., et al. 2019. ‘Germline-Restricted Chromosome (GRC) Is Widespread among Songbirds’. Proceedings of the National Academy of Sciences 116 (24): 11845–50. 10.1073/pnas.1817373116. PubMed DOI PMC
Vontzou Niki, Pei Yifan, Mueller Jakob C, et al. 2023. ‘Songbird Germline-Restricted Chromosome as a Potential Arena of Genetic Conflicts’. Current Opinion in Genetics & Development 83 (December): 102113. 10.1016/j.gde.2023.102113. PubMed DOI
Wang Jianbin, and Davis Richard E. 2014. ‘Programmed DNA Elimination in Multicellular Organisms’. Current Opinion in Genetics & Development 27 (August): 26–34. 10.1016/j.gde.2014.03.012. PubMed DOI PMC
Weisenfeld Neil I., Kumar Vijay, Shah Preyas, Church Deanna M., and Jaffe David B.. 2017. ‘Direct Determination of Diploid Genome Sequences’. Genome Research 27 (5): 757–67. 10.1101/gr.214874.116. PubMed DOI PMC
Yang Z. 2007. ‘PAML 4: Phylogenetic Analysis by Maximum Likelihood’. Molecular Biology and Evolution 24 (8): 1586–91. 10.1093/molbev/msm088. PubMed DOI