• This record comes from PubMed

Programmed DNA elimination drives rapid genomic innovation in two thirds of all bird species

. 2025 Jul 18 ; () : . [epub] 20250718

Status In-Process Language English Country United States Media electronic

Document type Journal Article, Preprint

Grant support
K99 HG014014 NHGRI NIH HHS - United States

Bird genomes are among the most stable in terms of synteny and gene content across vertebrates. However, germline-restricted chromosomes (GRCs) represent a striking exception where programmed DNA elimination confines large-scale genomic changes to the germline. GRCs are known to occur in songbirds (oscines), but have been studied only in a few species of Passerides such as the zebra finch, the key model for passerine genomics. Their presence and evolutionary dynamics in most major passerine lineages remain largely unexplored, with suboscines entirely unexamined by cytogenetic or genomic methods. Here, we present the most comprehensive comparative analysis of GRCs to date, spanning 44 million years of passerine evolution. By generating the first germline reference genomes of an oscine and a suboscine, 22 novel germline draft genomes spanning nearly all major passerine lineages and a germline draft genome of a parrot outgroup, we show that the GRC is likely present in 6,700 passerine species. Our results reveal that the GRC evolves rapidly and distinctly from the standard A chromosomes (autosomes and sex chromosomes), yet retains functionally important, selectively maintained genes. We observed gene and repeat turnover occuring orders of magnitude faster than on the A chromosomes. Some GRC genes, such as cpeb1 and pim1, are widespread from an ancient duplication. In contrast, other GRC genes, like mfsd2b and bmp15, have been independently duplicated onto the GRC multiple times, suggesting adaptive constraints. The discovery of zglp1 on the zebra finch GRC, initially copied from chromosome 30 and subsequently lost from it, indicates functional replacement, where the GRC permits gene loss from the standard genome. As the GRC harbors the only zglp1 copy in most of the ~4000 Passerides species, GRC loss would compromise essential germline functions. Our findings establish the GRC as a genomic innovator driving rapid germline evolution. This fact highlights its evolutionary significance for passerine diversification and suggests that programmed DNA elimination may be an overlooked yet phylogenetically widespread mechanism in many understudied animal lineages.

Australian National Wildlife Collection National Research Collections Australia CSIRO Australia

Bonn Institute for Organismal Biology Animal Biodiversity University of Bonn Germany

Bragato Research Institute Lincoln New Zealand

Centre for Molecular Biodiversity Research Leibniz Institute for the Analysis of Biodiversity Change Museum Koenig Bonn Germany

Department of Behavioural Neurobiology Max Planck Institute for Biological Intelligence Germany

Department of Biochemistry and Biophysics National Bioinformatics Infrastructure Sweden Science for Life Laboratory Stockholm University Sweden

Department of Bioinformatics and Genetics Swedish Museum of Natural History Sweden

Department of Biological Sciences Macquarie University Australia

Department of Biology and Museum of Southwestern Biology University of New Mexico USA

Department of Biology Duke University USA

Department of Biosciences University of Oslo Norway

Department of Ecology and Genetics Uppsala University Sweden

Department of Organismal Biology Systematic Biology Science for Life Laboratory Uppsala University Sweden

Department of Ornithology Max Planck Institute for Biological Intelligence Germany

Department of Zoology Faculty of Science Charles University Czech Republic

Embark Veterinary Inc USA

German Centre for Integrative Biodiversity Research Halle Jena Leipzig Leipzig 04103 Germany

Institute of Cytology and Genetics Russian Academy of Sciences Russia

Institute of Vertebrate Biology Czech Academy of Sciences Czech Republic

Instituto de Ciências Exatas e Naturais Universidade Federal do Pará Belém PA Brazil

Laboratory of Neurogenetics of Language The Rockefeller University USA

Natural History Museum of Denmark University of Copenhagen Denmark

Novosibirsk State University Russia

Population Ecology Group Institute of Biodiversity Ecology and Evolution Friedrich Schiller University of Jena Germany

School of Biological Sciences University of Auckland New Zealand

School of Biological Sciences University of East Anglia UK

Seção de Meio Ambiente Instituto Evandro Chagas Ananindeua PA Brazil

State Scientific Research Institute Nature Research Centre Vilnius Lithuania

Swiss Ornithological Institute Switzerland

See more in PubMed

Asalone Kathryn C, Takkar Ajuni K, Saldanha Colin J, and Bracht John R. 2021. ‘A Transcriptomic Pipeline Adapted for Genomic Sequence Discovery of Germline-Restricted Sequence in Zebra Finch, PubMed DOI PMC

Biederman Michelle K., Nelson Megan M., Asalone Kathryn C., Pedersen Alyssa L., Saldanha Colin J., and Bracht John R.. 2018. ‘Discovery of the First Germline-Restricted Gene by Subtractive Transcriptomic Analysis in the Zebra Finch, Taeniopygia Guttata’. Current Biology 28 (10): 1620–1627.e5. 10.1016/j.cub.2018.03.067. PubMed DOI PMC

Bolger Anthony M., Lohse Marc, and Usadel Bjoern. 2014. ‘Trimmomatic: A Flexible Trimmer for Illumina Sequence Data’. Bioinformatics 30 (15): 2114–20. 10.1093/bioinformatics/btu170. PubMed DOI PMC

Borodin Pavel, Chen Augustin, Forstmeier Wolfgang, et al. 2022. ‘Mendelian Nightmares: The Germline-Restricted Chromosome of Songbirds’. Chromosome Research 30 (2–3): 255–72. 10.1007/s10577-022-09688-3. PubMed DOI PMC

Bravo Gustavo A., Schmitt C. Jonathan, and Edwards Scott V.. 2021. ‘What Have We Learned from the First 500 Avian Genomes?’ Annual Review of Ecology, Evolution, and Systematics 52 (1): 611–39. 10.1146/annurev-ecolsys-012121-085928. DOI

Buchfink Benjamin, Reuter Klaus, and Drost Hajk-Georg. 2021. ‘Sensitive Protein Alignments at Tree-of-Life Scale Using DIAMOND’. Nature Methods 18 (4): 366–68. 10.1038/s41592-021-01101-x. PubMed DOI PMC

Cabanettes Floréal, and Klopp Christophe. 2018. ‘D-GENIES: Dot Plot Large Genomes in an Interactive, Efficient and Simple Way’. PeerJ 6 (June): e4958. 10.7717/peerj.4958. PubMed DOI PMC

Cheng Haoyu, Asri Mobin, Lucas Julian, Koren Sergey, and Li Heng. 2024. ‘Scalable Telomere-to-Telomere Assembly for Diploid and Polyploid Genomes with Double Graph’. Nature Methods 21 (6): 967–70. 10.1038/s41592-024-02269-8. PubMed DOI PMC

Cracraft J. 2014. ‘Avian Higher-Level Relationships and Classification: Passeriformes’. In The Howard and Moore Complete Checklist of the Birds of the World., 4th ed., vol. 2. Dickinson E.C. and Christidis L. (Eds). Aves Press.

Dainat Jacques, Cannoodt Robrecht, Soares André, et al. 2025. NBISweden/AGAT:AGAT v1.5.0. V. v1.5.0. Zenodo, released July 3. 10.5281/ZENODO.3552717. DOI

Dedukh Dmitrij, Malinovskaya Lyubov, Kauzál Ondřej, et al. 2025. ‘Mechanisms and Timing of Programmed DNA Elimination in Songbirds’. DOI

Del Priore, Lucía, and Pigozzi María Inés. 2014. ‘Histone Modifications Related to Chromosome Silencing and Elimination during Male Meiosis in Bengalese Finch’. Chromosoma 123 (3): 293–302. 10.1007/s00412-014-0451-3. PubMed DOI

Drummond A. J., Ashton B., Cheung M., et al. 2009. ‘Geneious v. 4.8. 5 Biomatters Ltd’. Aukland, New Zealand.

Fu Limin, Niu Beifang, Zhu Zhengwei, Wu Sitao, and Li Weizhong. 2012. ‘CD-HIT: Accelerated for Clustering the next-Generation Sequencing Data’. Bioinformatics 28 (23): 3150–52. 10.1093/bioinformatics/bts565. PubMed DOI PMC

Gill F, Donsker D, and Rasmussen P. 2025. IOC World Bird List (V15.1). https://www.worldbirdnames.org.

Gu Zuguang, Gu Lei, Eils Roland, Schlesner Matthias, and Brors Benedikt. 2014. ‘ PubMed DOI

Hahn Christoph, Bachmann Lutz, and Chevreux Bastien. 2013. ‘Reconstructing Mitochondrial Genomes Directly from Genomic Next-Generation Sequencing Reads—a Baiting and Iterative Mapping Approach’. Nucleic Acids Research 41 (13): e129–e129. 10.1093/nar/gkt371. PubMed DOI PMC

Hodson Christina N., Jaron Kamil S., Gerbi Susan, and Ross Laura. 2022. ‘Gene-Rich Germline-Restricted Chromosomes in Black-Winged Fungus Gnats Evolved through Hybridization’. PLOS Biology 20 (2): e3001559. 10.1371/journal.pbio.3001559. PubMed DOI PMC

Holst Felix, Bolger Anthony, Günther Christopher, et al. 2023. ‘Helixer– DOI

Itoh Yuichiro, Kampf Kathy, Pigozzi María Inés, and Arnold Arthur P.. 2009. ‘Molecular Cloning and Characterization of the Germline-Restricted Chromosome Sequence in the Zebra Finch’. Chromosoma 118 (4): 527–36. 10.1007/s00412-009-0216-6. PubMed DOI PMC

Johnson Pokorná, Martina, and Reifová Radka. 2021. ‘Evolution of B Chromosomes: From Dispensable Parasitic Chromosomes to Essential Genomic Players’. Frontiers in Genetics 12: 727570. 10.3389/fgene.2021.727570. PubMed DOI PMC

Katoh K., and Standley D. M.. 2013. ‘MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability’. Molecular Biology and Evolution 30 (4): 772–80. 10.1093/molbev/mst010. PubMed DOI PMC

Keilwagen Jens, Hartung Frank, and Grau Jan. ‘GeMoMa: Homology-Based Gene Prediction Utilizing Intron Position Conservation and RNA-Seq Data’. 2019. In Methods in Molecular Biology.Springer; New York. 10.1007/978-1-4939-9173-0_9. PubMed DOI

Kinsella Cormac M., Ruiz-Ruano Francisco J., Dion-Côte Anne-Marie, et al. 2019. ‘Programmed DNA Elimination of Germline Development Genes in Songbirds’. Nature Communications 10 (1): 5468. 10.1038/s41467-019-13427-4. PubMed DOI PMC

Li Heng. 2018. ‘Minimap2: Pairwise Alignment for Nucleotide Sequences’. Bioinformatics 34 (18): 3094–100. 10.1093/bioinformatics/bty191. PubMed DOI PMC

Marlétaz Ferdinand, Timoshevskaya Nataliya, Timoshevskiy Vladimir A., et al. 2024. ‘The Hagfish Genome and the Evolution of Vertebrates’. Nature 627 (8005): 811–20. 10.1038/s41586-024-07070-3. PubMed DOI PMC

Minh Bui Quang, Schmidt Heiko A, Chernomor Olga, et al. 2020. ‘IQ-TREE 2: New Models and Efficient Methods for Phylogenetic Inference in the Genomic Era’. Molecular Biology and Evolution 37 (5): 1530–34. 10.1093/molbev/msaa015. PubMed DOI PMC

Mueller Jakob C, Schlebusch Stephen A, Pei Yifan, et al. 2023. ‘Micro Germline-Restricted Chromosome in Blue Tits: Evidence for Meiotic Functions’. Molecular Biology and Evolution 40 (5): msad096. 10.1093/molbev/msad096. PubMed DOI PMC

Nagaoka So I., Nakaki Fumio, Miyauchi Hidetaka, et al. 2020. ‘ZGLP1 Is a Determinant for the Oogenic Fate in Mice’. Science 367 (6482): eaaw4115. 10.1126/science.aaw4115. PubMed DOI

Oliveros Carl H., Field Daniel J., Ksepka Daniel T., et al. 2019. ‘Earth History and the Passerine Superradiation’. Proceedings of the National Academy of Sciences 116 (16): 7916–25. 10.1073/pnas.1813206116. PubMed DOI PMC

Ortiz Edgardo M., Höwener Alina, Shigita Gentaro, et al. 2023. ‘A Novel Phylogenomics Pipeline Reveals Complex Pattern of Reticulate Evolution in Cucurbitales’. DOI

Pei Yifan, Forstmeier Wolfgang, Ruiz-Ruano Francisco J., et al. 2022. ‘Occasional Paternal Inheritance of the Germline-Restricted Chromosome in Songbirds’. Proceedings of the National Academy of Sciences 119 (4): e2103960119. 10.1073/pnas.2103960119. PubMed DOI PMC

Peona Valentina, Blom Mozes P. K., Frankl-Vilches Carolina, et al. 2022. ‘The Hidden Structural Variability in Avian Genomes’. DOI

Peona Valentina, Palacios-Gimenez Octavio M., Blommaert Julie, et al. 2021. ‘The Avian W Chromosome Is a Refugium for Endogenous Retroviruses with Likely Effects on Female-Biased Mutational Load and Genetic Incompatibilities’. Philosophical Transactions of the Royal Society B: Biological Sciences 376 (1833): 20200186. 10.1098/rstb.2020.0186. PubMed DOI PMC

Löytynoja Ari. ‘Phylogeny-Aware Alignment with PRANK’. 2014. In Methods in Molecular Biology, by. Humana Press. 10.1007/978-1-62703-646-7_10. PubMed DOI

Pigozzi M. I., and Solari A. J.. 1998. ‘Germ Cell Restriction and Regular Transmission of an Accessory Chromosome That Mimics a Sex Body in the Zebra Finch, Taeniopygia Guttata’. Chromosome Research 6 (2): 105–13. 10.1023/A:1009234912307. PubMed DOI

Quigley Sarah, Damas Joana, Larkin Denis M, and Farré Marta. 2023. ‘syntenyPlotteR: A User-Friendly R Package to Visualize Genome Synteny, Ideal for Both Experienced and Novice Bioinformaticians’. Bioinformatics Advances 3 (1). 10.1093/bioadv/vbad161. PubMed DOI PMC

Rambaut Andrew. 2018. ‘FigTree v1.4.5’. http://tree.bio.ed.ac.uk/software/figtree/.

Rhie Arang, Walenz Brian P., Koren Sergey, and Phillippy Adam M.. 2020. ‘Merqury: Reference-Free Quality, Completeness, and Phasing Assessment for Genome Assemblies’. Genome Biology 21 (1). 10.1186/s13059-020-02134-9. PubMed DOI PMC

Ruiz-Ruano Francisco J., Navarro-Domíguez Beatriz, López-León María Dolores, Cabrero Josefa, and Camacho Juan Pedro M.. 2019. ‘Evolutionary Success of a Parasitic B Chromosome Rests on Gene Content’. DOI

Schlebusch Stephen A., Rídl Jakub, Poignet Manon, et al. 2023. ‘Rapid Gene Content Turnover on the Germline-Restricted Chromosome in Songbirds’. Nature Communications 14 (1): 4579. 10.1038/s41467-023-40308-8. PubMed DOI PMC

Sela Itamar, Ashkenazy Haim, Katoh Kazutaka, and Pupko Tal. 2015. ‘GUIDANCE2: Accurate Detection of Unreliable Alignment Regions Accounting for the Uncertainty of Multiple Parameters’. Nucleic Acids Research 43 (W1): W7–14. 10.1093/nar/gkv318. PubMed DOI PMC

Smith Jeramiah J., Timoshevskaya Nataliya, Ye Chengxi, et al. 2018. ‘The Sea Lamprey Germline Genome Provides Insights into Programmed Genome Rearrangement and Vertebrate Evolution’. Nature Genetics 50 (2): 270–77. 10.1038/s41588-017-0036-1. PubMed DOI PMC

Smith Jeramiah J., Timoshevskiy Vladimir A., and Saraceno Cody. 2021. ‘Programmed DNA Elimination in Vertebrates’. Annual Review of Animal Biosciences 9 (1): 173–201. 10.1146/annurev-animal-061220-023220. PubMed DOI PMC

Sotelo-Muñoz Manuelita, Poignet Manon, Albrecht Tomáš, et al. 2022. ‘Germline-Restricted Chromosome Shows Remarkable Variation in Size among Closely Related Passerine Species’. Chromosoma 131 (1–2): 77–86. 10.1007/s00412-022-00771-6. PubMed DOI

Stamatakis Alexandros. 2014. ‘RAxML Version 8: A Tool for Phylogenetic Analysis and Post-Analysis of Large Phylogenies’. Bioinformatics 30 (9): 1312–13. 10.1093/bioinformatics/btu033. PubMed DOI PMC

Sweeten Alexander P, Schatz Michael C, and Phillippy Adam M. 2024. ‘ModDotPlot—Rapid and Interactive Visualization of Tandem Repeats’. Bioinformatics 40 (8). 10.1093/bioinformatics/btae493. PubMed DOI PMC

Timoshevskaya Nataliya, Eşkut Kaan İ., Timoshevskiy Vladimir A., et al. 2023. ‘An Improved Germline Genome Assembly for the Sea Lamprey Petromyzon Marinus Illuminates the Evolution of Germline-Specific Chromosomes’. Cell Reports 42 (3): 112263. 10.1016/j.celrep.2023.112263. PubMed DOI PMC

Torgasheva Anna A., Malinovskaya Lyubov P., Zadesenets Kira S., et al. 2019. ‘Germline-Restricted Chromosome (GRC) Is Widespread among Songbirds’. Proceedings of the National Academy of Sciences 116 (24): 11845–50. 10.1073/pnas.1817373116. PubMed DOI PMC

Vontzou Niki, Pei Yifan, Mueller Jakob C, et al. 2023. ‘Songbird Germline-Restricted Chromosome as a Potential Arena of Genetic Conflicts’. Current Opinion in Genetics & Development 83 (December): 102113. 10.1016/j.gde.2023.102113. PubMed DOI

Wang Jianbin, and Davis Richard E. 2014. ‘Programmed DNA Elimination in Multicellular Organisms’. Current Opinion in Genetics & Development 27 (August): 26–34. 10.1016/j.gde.2014.03.012. PubMed DOI PMC

Weisenfeld Neil I., Kumar Vijay, Shah Preyas, Church Deanna M., and Jaffe David B.. 2017. ‘Direct Determination of Diploid Genome Sequences’. Genome Research 27 (5): 757–67. 10.1101/gr.214874.116. PubMed DOI PMC

Yang Z. 2007. ‘PAML 4: Phylogenetic Analysis by Maximum Likelihood’. Molecular Biology and Evolution 24 (8): 1586–91. 10.1093/molbev/msm088. PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...