Microscopy, culture, and quantitative real-time PCR examination confirm internalization of mycobacteria in plants
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
24747896
PubMed Central
PMC4054198
DOI
10.1128/aem.00496-14
PII: AEM.00496-14
Knihovny.cz E-zdroje
- MeSH
- bakteriologické techniky MeSH
- endocytóza * MeSH
- kvantitativní polymerázová řetězová reakce MeSH
- listy rostlin mikrobiologie MeSH
- mikroskopie MeSH
- Mycobacterium genetika růst a vývoj fyziologie MeSH
- rostliny mikrobiologie MeSH
- stonky rostlin mikrobiologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The environment is a reservoir of nontuberculous mycobacteria and is considered a source of infection for animals and humans. Mycobacteria can persist in different types of environments for a relatively long time. We have studied their possible internalization into plant tissue through intact, as well as damaged, root systems of different types of plants grown in vitro and under field conditions. The substrate into which plants were seeded was previously contaminated with different strains of Mycobacterium avium (10(8) to 10(10) cells/g of soil) and feces from animals with paratuberculosis. We detected M. avium subsp. avium, hominissuis, and paratuberculosis in the stems and leaves of the plants by both culture and real-time quantitative PCR. The presence of mycobacteria in the plant tissues was confirmed by microscopy. The concentration of mycobacteria found inside plant tissue was several orders of magnitude lower (up to 10(4) cells/g of tissue) than the initial concentration of mycobacteria present in the culture medium or substrate. These findings led us to the hypothesis that plants may play a role in the spread and transmission of mycobacteria to other organisms in the environment.
Zobrazit více v PubMed
Pontiroli A, Khera TT, Oakley BB, Mason S, Dowd SE, Travis ER, Erenso G, Aseffa A, Courtenay O, Wellington EM. 2013. Prospecting environmental mycobacteria: combined molecular approaches reveal unprecedented diversity. PLoS One 8:e68648. 10.1371/journal.pone.0068648 PubMed DOI PMC
Falkinham JO. 1996. Epidemiology of infection by nontuberculous mycobacteria. Clin. Microbiol. Rev. 9:177–215 PubMed PMC
Sun HY, Chen MY, Wu MS, Hsieh SM, Fang CT, Hung CC, Chang SC. 2005. Endoscopic appearance of GI mycobacteriosis caused by the Mycobacterium avium complex in a patient with AIDS: case report and review. Gastrointest. Endosc. 61:775–779. 10.1016/S0016-5107(04)02786-5 PubMed DOI
Whiley H, Keegan A, Giglio S, Bentham R. 2012. Mycobacterium avium complex—the role of potable water in disease transmission. J. Appl. Microbiol. 113:223–232. 10.1111/j.1365-2672.2012.05298.x PubMed DOI
Kaevska M, Slana I, Kralik P, Reischl U, Orosova J, Holcikova A, Pavlik I. 2011. “Mycobacterium avium subsp. hominissuis” in neck lymph nodes of children and their environment examined by culture and triplex quantitative real-time PCR. J. Clin. Microbiol. 49:167–172. 10.1128/JCM.00802-10 PubMed DOI PMC
Argueta C, Yoder S, Holtzman AE, Aronson TW, Glover N, Berlin OGW, Stelma GN, Froman S, Tomasek P. 2000. Isolation and identification of nontuberculous mycobacteria from foods as possible exposure sources. J. Food Prot. 63:930–933 PubMed
Yajko DM, Chin DP, Gonzalez PC, Nassos PS, Hopewell PC, Reingold AL, Horsburgh CR, Yakrus MA, Ostroff SM. 1995. Mycobacterium avium complex in water, food, and soil samples collected from the environment of HIV-infected individuals. J. Acquir. Immune Defic. Syndr. Hum. Retrovirol. 9:176–182 PubMed
Yoder S, Argueta C, Holtzman A, Aronson T, Berlin OGW, Tomasek P, Glover N, Froman S, Stelma G. 1999. PCR comparison of Mycobacterium avium isolates obtained from patients and foods. Appl. Environ. Microbiol. 65:2650–2653 PubMed PMC
Durnez L, Stragier P, Roebben K, Ablordey A, Leirs H, Portaels F. 2009. A comparison of DNA extraction procedures for the detection of Mycobacterium ulcerans, the causative agent of Buruli ulcer, in clinical and environmental specimens. J. Microbiol. Methods 76:152–158. 10.1016/j.mimet.2008.10.002 PubMed DOI
Drewe JA, Mwangi D, Donoghue HD, Cromie RL. 2009. PCR analysis of the presence and location of Mycobacterium avium in a constructed reed bed, with implications for avian tuberculosis control. FEMS Microbiol. Ecol. 67:320–328. 10.1111/j.1574-6941.2008.00618.x PubMed DOI
Zwielehner J, Handschur M, Michaelsen A, Irez S, Demel M, Denner EBM, Hasiberger AG. 2008. DGGE and real-time PCR analysis of lactic acid bacteria in bacterial communities of the phyllosphere of lettuce. Mol. Nutr. Food Res. 52:614–623. 10.1002/mnfr.200700158 PubMed DOI
Pribylova R, Slana I, Kaevska M, Lamka J, Babak V, Jandak J, Pavlik I. 2011. Soil and plant contamination with Mycobacterium avium subsp. paratuberculosis after exposure to naturally contaminated mouflon feces. Curr. Microbiol. 62:1405–1410. 10.1007/s00284-011-9875-7 PubMed DOI
McIntosh M, Williamson H, Benbow ME, Kimbirauskas R, Quaye C, Boakye D, Small P, Merritt R. 2014. Associations between Mycobacterium ulcerans and aquatic plant communities of West Africa: implications for Buruli ulcer disease. EcoHealth 10.1007/s10393-013-0898-3 PubMed DOI
Guo XA, van Iersel MW, Chen JR, Brackett RE, Beuchat LR. 2002. Evidence of association of salmonellae with tomato plants grown hydroponically in inoculated nutrient solution. Appl. Environ. Microbiol. 68:3639–3643. 10.1128/AEM.68.7.3639-3643.2002 PubMed DOI PMC
Heaton JC, Jones K. 2008. Microbial contamination of fruit and vegetables and the behaviour of enteropathogens in the phyllosphere: a review. J. Appl. Microbiol. 104:613–626. 10.1111/j.1365-2672.2007.03587.x PubMed DOI
Mitra R, Cuesta-Alonso E, Wayadande A, Talley J, Gilliland S, Fletcher J. 2009. Effect of route of introduction and host cultivar on the colonization, internalization, and movement of the human pathogen Escherichia coli O157:H7 in Spinach. J. Food Prot. 72:1521–1530 PubMed
Gorbatsevich E, Sela S, Pinto R, Bernstein N. 2013. Root internalization, transport and in-planta survival of Salmonella enterica serovar Newport in sweet basil. Environ. Microbiol. Rep. 5:151–159. 10.1111/1758-2229.12008 PubMed DOI
Gu G, Cevallos-Cevallos JM, van Bruggen AH. 2013. Ingress of Salmonella enterica Typhimurium into tomato leaves through hydathodes. PLoS One 8:e53470. 10.1371/journal.pone.0053470 PubMed DOI PMC
Slana I, Kaevska M, Kralik P, Horvathova A, Pavlik I. 2010. Distribution of Mycobacterium avium subsp. avium and M. a. hominissuis in artificially infected pigs studied by culture and IS901 and IS1245 quantitative real time PCR. Vet. Microbiol. 144:437–443. 10.1016/j.vetmic.2010.02.024 PubMed DOI
Fischer O, Matlova L, Dvorska L, Svastova P, Bartl J, Melicharek I, Weston RT, Pavlik I. 2001. Diptera as vectors of mycobacterial infections in cattle and pigs. Med. Vet. Entomol. 15:208–211. 10.1046/j.1365-2915.2001.00292.x PubMed DOI
Balazova T, Makovcova J, Sedo O, Slany M, Faldyna M, Zdrahal Z. 2014. The influence of culture conditions on the identification of Mycobacterium species by MALDI-TOF MS profiling. FEMS Microbiol. Lett. 10.1111/1574-6968.12408 PubMed DOI
Slana I, Kralik P, Kralova A, Pavlik I. 2008. On-farm spread of Mycobacterium avium subsp. paratuberculosis in raw milk studied by IS900 and F57 competitive real time quantitative PCR and culture examination. Int. J. Food Microbiol. 128:250–257. 10.1016/j.ijfoodmicro.2008.08.013 PubMed DOI
Deering AJ, Mauer LJ, Pruitt RE. 2012. Internalization of E. coli O157:H7 and Salmonella spp. in plants: a review. Food Res. Int. 45:567–575. 10.1016/j.foodres.2011.06.058 DOI
Standing TA, du Plessis E, Duvenage S, Korsten L. 2013. Internalisation potential of Escherichia coli O157:H7, Listeria monocytogenes, Salmonella enterica subsp. enterica serovar Typhimurium and Staphylococcus aureus in lettuce seedlings and mature plants. J. Water Health 11:210–223. 10.2166/wh.2013.164 PubMed DOI
Solomon EB, Yaron S, Matthews KR. 2002. Transmission of Escherichia coli O157:H7 from contaminated manure and irrigation water to lettuce plant tissue and its subsequent internalization. Appl. Environ. Microbiol. 68:397–400. 10.1128/AEM.68.1.397-400.2002 PubMed DOI PMC
Whittington RJ, Marshall DJ, Nicholls PJ, Marsh AB, Reddacliff LA. 2004. Survival and dormancy of Mycobacterium avium subsp. paratuberculosis in the environment. Appl. Environ. Microbiol. 70:2989–3004. 10.1128/AEM.70.5.2989-3004.2004 PubMed DOI PMC
Guo X, Chen J, Brackett RE, Beuchat LR. 2001. Survival of salmonellae on and in tomato plants from the time of inoculation at flowering and early stages of fruit development through fruit ripening. Appl. Environ. Microbiol. 10:4760–4764. 10.1128/AEM.67.10.4760-4764.2001 PubMed DOI PMC