Sex-Dependent Changes in Striatal Dopamine Transport in Preadolescent Rats Exposed Prenatally and/or Postnatally to Methamphetamine
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
27038442
DOI
10.1007/s11064-016-1902-4
PII: 10.1007/s11064-016-1902-4
Knihovny.cz E-zdroje
- Klíčová slova
- Dopamine transporter, Membrane fluidity, Methamphetamine, Sex differences,
- MeSH
- corpus striatum účinky léků metabolismus MeSH
- dopamin metabolismus MeSH
- krysa rodu Rattus MeSH
- methamfetamin aplikace a dávkování toxicita MeSH
- novorozená zvířata MeSH
- pohlavní dimorfismus * MeSH
- potkani Wistar MeSH
- proteiny přenášející dopamin přes plazmatickou membránu metabolismus MeSH
- těhotenství MeSH
- zpožděný efekt prenatální expozice chemicky indukované metabolismus MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- těhotenství MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- dopamin MeSH
- methamfetamin MeSH
- proteiny přenášející dopamin přes plazmatickou membránu MeSH
Methamphetamine (MA) is the most commonly used psychostimulant drug, the chronic abuse of which leads to neurodegenerative changes in the brain. The global use of MA is increasing, including in pregnant women. Since MA can cross both placental and haematoencephalic barriers and is also present in maternal milk, children of chronically abused mothers are exposed prenatally as well as postnatally. Women seem to be more vulnerable to some aspects of MA abuse than men. MA is thought to exert its effects among others via direct interactions with dopamine transporters (DATs) in the brain tissue. Sexual dimorphism of the DAT system could be a base of sex-dependent actions of MA observed in behavioural and neurochemical studies. Possible sex differences in the DATs of preadolescent offspring exposed to MA prenatally and/or postnatally have not yet been evaluated. We examined the striatal synaptosomal DATs (the activity and density of surface expressed DATs and total DAT expression) in preadolescent male and female Wistar rats (31-35-day old animals) exposed prenatally and/or postnatally to MA (daily 5 mg/kg, s.c. to mothers during pregnancy and lactation). To distinguish between specific and nonspecific effects of MA on DATs, we also evaluated the in vitro effects of lipophilic MA on the fluidity of striatal membranes isolated from preadolescent and young adult rats of both sexes. We observed similar changes in the DATs of preadolescent rats exposed prenatally or postnatally (MA-mediated drop in the reserve pool but no alterations in surface-expressed DATs). However, prenatal exposure evoked significant changes in males and postnatal exposure in females. A significant decrease in the activity of surface-expressed DATs was found only in postnatally exposed females sensitized to MA via prenatal exposure. MA applied in vitro increased the fluidity of striatal membranes of preadolescent female but not male rats. In summary, DATs of preadolescent males are more sensitive to prenatal MA exposure via changes in the reserve pool and those of preadolescent females to postnatal MA exposure via the same mechanism. The combination of prenatal and postnatal MA exposure increases the risk of dopaminergic deficits via alterations in the activity of surface-expressed DATs especially in preadolescent females. MA-mediated changes in DATs of preadolescent females could be still enhanced via nonspecific disordering actions of MA on striatal membranes.
Institute of Computer Science The Czech Academy of Sciences Prague Czech Republic
National Institute of Mental Health Topolova 748 250 67 Klecany Czech Republic
Zobrazit více v PubMed
Brain Dev. 1986;8(4):390-6 PubMed
Biochemistry. 2001 Jul 24;40(29):8563-71 PubMed
Ann N Y Acad Sci. 2004 Oct;1025:602-11 PubMed
J Neurochem. 2010 Apr;113(1):27-41 PubMed
Obstet Gynecol. 2009 Jun;113(6):1285-91 PubMed
Neuroendocrinology. 2005;82(2):78-86 PubMed
Neurosci Biobehav Rev. 2003 Jan-Mar;27(1-2):3-18 PubMed
Prog Neuropsychopharmacol Biol Psychiatry. 2006 Jan;30(1):82-8 PubMed
Brain Res Dev Brain Res. 1996 Jul 20;94(2):109-20 PubMed
Front Neuroendocrinol. 2008 Jan;29(1):36-47 PubMed
J Pharmacol Exp Ther. 2009 Apr;329(1):169-74 PubMed
J Neurosci. 1991 May;11(5):1325-33 PubMed
Physiol Behav. 2010 Mar 3;99(3):381-7 PubMed
Gen Comp Endocrinol. 2014 Feb 1;197:18-25 PubMed
Ann N Y Acad Sci. 1998 May 30;844:153-65 PubMed
Toxicol Appl Pharmacol. 2005 Dec 15;209(3):203-13 PubMed
Brain Res Dev Brain Res. 1990 May 1;53(2):222-9 PubMed
Neurotoxicol Teratol. 1996 Mar-Apr;18(2):199-215 PubMed
J Subst Abuse Treat. 2002 Sep;23(2):145-50 PubMed
Synapse. 2008 Oct;62(10):736-45 PubMed
Brain Res Dev Brain Res. 1997 Nov 12;103(2):155-62 PubMed
Brain Res. 1995 Sep 18;692(1-2):269-72 PubMed
Biochemistry. 2000 Aug 22;39(33):10309-18 PubMed
Neurochem Res. 2012 Mar;37(3):604-13 PubMed
Exp Gerontol. 2013 Mar;48(3):319-25 PubMed
Neuroscience. 2000;95(4):1061-70 PubMed
Dev Psychobiol. 2013 Apr;55(3):232-42 PubMed
Drug Alcohol Depend. 2014 Jun 1;139:138-44 PubMed
Int J Dev Neurosci. 2009 Oct;27(6):525-30 PubMed
Subst Abuse. 2014 Apr 28;8:25-33 PubMed
Nat Rev Neurosci. 2003 Jan;4(1):13-25 PubMed
Ann N Y Acad Sci. 2000 Sep;914:431-8 PubMed
J Neurochem. 2001 Sep;78(5):952-9 PubMed
Int J Mol Sci. 2014 Apr 08;15(4):5884-906 PubMed
J Neurosci. 2004 Mar 31;24(13):3436-43 PubMed
J Neurochem. 2014 May;129(3):495-508 PubMed
J Neuroendocrinol. 2005 Aug;17(8):509-17 PubMed
Neuroendocrinology. 1993 Jul;58(1):16-22 PubMed
Front Neurosci. 2015 May 27;9:178 PubMed
Brain Res Dev Brain Res. 1996 Jun 14;94(1):37-43 PubMed
Psychopharmacology (Berl). 2014 Apr;231(8):1581-99 PubMed
Physiol Res. 2009;58(5):741-50 PubMed
Brain Res Rev. 2009 May;60(2):379-407 PubMed
Int J Dev Neurosci. 2015 Apr;41:44-62 PubMed
Brain Res. 1996 Apr 1;714(1-2):95-103 PubMed
Neuropsychopharmacology. 2006 Jun;31(6):1193-202 PubMed
Arch Biochem Biophys. 1992 May 15;295(1):161-71 PubMed
Psychopharmacology (Berl). 1994 Apr;114(3):402-8 PubMed
Brain Res Dev Brain Res. 2001 Jul 23;129(1):73-9 PubMed
Indian J Biochem Biophys. 2013 Feb;50(1):32-9 PubMed
Neuroscience. 1988 Jun;25(3):857-87 PubMed
Biol Psychiatry. 2011 Nov 1;70(9):842-51 PubMed
J Neural Transm Gen Sect. 1993;93(1):67-70 PubMed
J Neuroendocrinol. 2007 Sep;19(9):682-90 PubMed
Synapse. 1993 Mar;13(3):241-50 PubMed
J Comp Neurol. 1992 Sep 8;323(2):299-304 PubMed
Physiol Rev. 2008 Jan;88(1):91-124 PubMed
Anal Biochem. 1976 May 7;72:248-54 PubMed
Brain Res. 2005 Feb 28;1035(2):188-95 PubMed
Neuropsychopharmacology. 2012 Feb;37(3):586-608 PubMed
J Pharmacol Exp Ther. 2010 Oct;335(1):207-12 PubMed
PLoS One. 2011 Jan 27;6(1):e16350 PubMed
Cell Death Dis. 2013 Oct 10;4:e850 PubMed
JAMA. 2000 May 3;283(17):2225-6 PubMed
J Neurochem. 1993 May;60(5):1876-83 PubMed