Soup to Tree: The Phylogeny of Beetles Inferred by Mitochondrial Metagenomics of a Bornean Rainforest Sample
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
25957318
PubMed Central
PMC4540967
DOI
10.1093/molbev/msv111
PII: msv111
Knihovny.cz E-zdroje
- Klíčová slova
- Coleoptera, Illumina MiSeq, biodiversity, bulk samples, community ecology, metagenome skimming, mitochondrial genomes, mitochondrial metagenomics, phylogeny, tree-of-life,
- MeSH
- brouci genetika MeSH
- deštný prales MeSH
- frekvence genu MeSH
- fylogeneze MeSH
- genetická variace MeSH
- genom mitochondriální MeSH
- hmyzí geny MeSH
- kontigové mapování MeSH
- metagenom MeSH
- mitochondrie genetika MeSH
- sekvenční analýza DNA MeSH
- vysoce účinné nukleotidové sekvenování MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Borneo MeSH
In spite of the growth of molecular ecology, systematics and next-generation sequencing, the discovery and analysis of diversity is not currently integrated with building the tree-of-life. Tropical arthropod ecologists are well placed to accelerate this process if all specimens obtained through mass-trapping, many of which will be new species, could be incorporated routinely into phylogeny reconstruction. Here we test a shotgun sequencing approach, whereby mitochondrial genomes are assembled from complex ecological mixtures through mitochondrial metagenomics, and demonstrate how the approach overcomes many of the taxonomic impediments to the study of biodiversity. DNA from approximately 500 beetle specimens, originating from a single rainforest canopy fogging sample from Borneo, was pooled and shotgun sequenced, followed by de novo assembly of complete and partial mitogenomes for 175 species. The phylogenetic tree obtained from this local sample was highly similar to that from existing mitogenomes selected for global coverage of major lineages of Coleoptera. When all sequences were combined only minor topological changes were induced against this reference set, indicating an increasingly stable estimate of coleopteran phylogeny, while the ecological sample expanded the tip-level representation of several lineages. Robust trees generated from ecological samples now enable an evolutionary framework for ecology. Meanwhile, the inclusion of uncharacterized samples in the tree-of-life rapidly expands taxon and biogeographic representation of lineages without morphological identification. Mitogenomes from shotgun sequencing of unsorted environmental samples and their associated metadata, placed robustly into the phylogenetic tree, constitute novel DNA "superbarcodes" for testing hypotheses regarding global patterns of diversity.
Department of Biology Faculty of Education Palacký University Olomouc Czech Republic
Department of Life Sciences Natural History Museum London United Kingdom
Entomology Section Forest Research Centre Forestry Department Sandakan Sabah Malaysia
Zobrazit více v PubMed
Altschup S, Gish W, Miller W, Myers E, Lipman D. 1990. Basic Local Alignment Search Tool. J Mol Biol. 215:403–410. PubMed
Baselga A, Gómez-Rodríguez C, Novoa F, Vogler AP. 2013. Rare failures of DNA bar codes to separate morphologically distinct species in a biodiversity survey of Iberian leaf beetles. PLoS One 8:e74854. PubMed PMC
Bernt M, Bleidorn C, Braband A, Dambach J, Donath A, Fritzsch G, Golombek A, Hadrys H, Jühling F, Meusemann K, et al. 2013. A comprehensive analysis of bilaterian mitochondrial genomes and phylogeny. Mol Phylogenet Evol. 69:352–364. PubMed
Bernt M, Braband A, Schierwater B, Stadler PF. 2013. Genetic aspects of mitochondrial genome evolution. Mol Phylogenet Evol. 69:328–338. PubMed
Besnard G, Jühling F, Chapuis É, Zedane L, Lhuillier É, Mateille T, Bellafiore S. 2014. Fast assembly of the mitochondrial genome of a plant parasitic nematode (Meloidogyne graminicola) using next generation sequencing. C R Biol. 337:295–301. PubMed
Bezděk J. 2013. Revision of the genus Hesperopenna (Coleoptera: Chrysomelidae: Galerucinae). I. Generic redescription, definition of species groups and taxonomy of H. medvedevi species group. Acta Entomol Mus Natl Pragae. 53:715–746.
Bininda-Emonds ORP. 2005. transAlign: using amino acids to facilitate the multiple alignment of protein-coding DNA sequences. BMC Bioinformatics 6:156. PubMed PMC
Blaxter M, Floyd R. 2003. Molecular taxonomics for biodiversity surveys: already a reality. Trends Ecol Evol. 18:268–269.
Bocak L, Barton C, Crampton-Platt A, Chesters D, Ahrens D, Vogler AP. 2014. Building the Coleoptera tree-of-life for >8000 species: composition of public DNA data and fit with Linnaean classification. Syst Entomol. 39:97–110.
Cameron SL. 2014. Insect mitochondrial genomics: implications for evolution and phylogeny. Annu Rev Entomol. 59:95–117. PubMed
Cracraft J. 2002. The seven great questions of systematic biology: an essential foundation for conservation and the sustainable use of biodiversity. Ann Mo Bot Gard. 89:127–144.
Creer S, Fonseca VG, Porazinska DL, Giblin-Davis RM, Sung W, Power DM, Packer M, Carvalho GR, Blaxter ML, Lambshead PJD, et al. 2010. Ultrasequencing of the meiofaunal biosphere: practice, pitfalls and promises. Mol Ecol. 19(Suppl. 1):4–20. PubMed
Cristescu ME. 2014. From barcoding single individuals to metabarcoding biological communities: towards an integrative approach to the study of global biodiversity. Trends Ecol Evol. 29:566–571. PubMed
Drummond AJ, Suchard MA, Xie D, Rambaut A. 2012. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol Biol Evol. 29:1969–1973. PubMed PMC
Eddy S, Durbin R. 1994. RNA sequence analysis using covariance models. Nucleic Acids Res. 22:2079–2088. PubMed PMC
Faircloth BC, McCormack JE, Crawford NG, Harvey MG, Brumfield RT, Glenn TC. 2012. Ultraconserved elements anchor thousands of genetic markers spanning multiple evolutionary timescales. Syst Biol. 61:717–726. PubMed
Faith DP. 1992. Conservation evaluation and phylogenetic diversity. Biol Conserv. 61:1–10.
Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R. 1994. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotechnol. 3:294–299. PubMed
García-Alcalde F, Okonechnikov K, Carbonell J, Cruz LM, Götz S, Tarazona S, Dopazo J, Meyer TF, Conesa A. 2012. Qualimap: evaluating next-generation sequencing alignment data. Bioinformatics 28:2678–2679. PubMed
Gibson J, Shokralla S, Porter TM, King I, van Konynenburg S, Janzen DH, Hallwachs W, Hajibabaei M. 2014. Simultaneous assessment of the macrobiome and microbiome in a bulk sample of tropical arthropods through DNA metasystematics. Proc Natl Acad Sci U S A. 111:8007–8012. PubMed PMC
Gillett CPDT, Crampton-Platt A, Timmermans MJTN, Jordal B, Emerson BC, Vogler AP. 2014 Bulk de novo mitogenome assembly from pooled total DNA elucidates the phylogeny of weevils (Coleoptera: Curculionoidea). Mol Biol Evol. 31:2223–2237. PubMed PMC
Gómez-Zurita J, Hunt T, Kopliku F, Vogler AP. 2007. Recalibrated tree of leaf beetles (Chrysomelidae) indicates independent diversification of angiosperms and their insect herbivores. PLoS One 2:e360. PubMed PMC
Graham CH, Fine PVA. 2008. Phylogenetic beta diversity: linking ecological and evolutionary processes across space in time. Ecol Lett. 11:1265–1277. PubMed
Hawkins C, MacMahon J. 1989. Guilds: the multiple meanings of a concept. Annu Rev Entomol. 34:423–451.
Hunt T, Bergsten J, Levkanicova Z, Papadopoulou A, St. John O, Wild R, Hammond PM, Ahrens D, Balke M, Caterino MS, et al. 2007. A comprehensive phylogeny of beetles reveals the evolutionary origins of a superradiation. Science 318:1913–1916. PubMed
Huson DH, Auch AF, Qi J, Schuster SC. 2007. MEGAN analysis of metagenomic data. Genome Res. 17:377–386. PubMed PMC
Ji Y, Ashton L, Pedley SM, Edwards DP, Tang Y, Nakamura A, Kitching R, Dolman PM, Woodcock P, Edwards FA, et al. 2013. Reliable, verifiable and efficient monitoring of biodiversity via metabarcoding. Ecol Lett. 16:1245–1257. PubMed
Katoh K, Standley DM. 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 30:772–780. PubMed PMC
Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper A, Markowitz S, Duran C, et al. 2012. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28:1647–1649. PubMed PMC
Langmead B, Salzberg SL. 2012. Fast gapped-read alignment with Bowtie 2. Nat Methods. 9:357–359. PubMed PMC
Lartillot N, Brinkmann H, Philippe H. 2007. Suppression of long-branch attraction artefacts in the animal phylogeny using a site-heterogeneous model. BMC Evol Biol. 7(Suppl. 1):S4. PubMed PMC
Lartillot N, Lepage T, Blanquart S. 2009. PhyloBayes 3: a Bayesian software package for phylogenetic reconstruction and molecular dating. Bioinformatics 25:2286–2288. PubMed
Lawton J, Bignell D, Bolton B, Bloemers G, Eggleton P, Hammond P, Hodda M, Holt R, Larsen T, Mawdsley N, et al. 1998. Biodiversity inventories, indicator taxa and effects of habitat modification in tropical forest. Nature 391:72–76.
Lemmon AR, Emme SA, Lemmon EM. 2012. Anchored hybrid enrichment for massively high-throughput phylogenomics. Syst Biol. 61:727–744. PubMed
Letsch HO, Meusemann K, Wipfler B, Schütte K, Beutel R, Misof B. 2012. Insect phylogenomics: results, problems and the impact of matrix composition. Proc Biol Sci. 279:3282–3290. PubMed PMC
Li C, Hofreiter M, Straube N, Corrigan S, Naylor GJP. 2013. Capturing protein-coding genes across highly divergent species. Biotechniques 54:321–326. PubMed
Li H. 2014. Toward better understanding of artifacts in variant calling from high-coverage samples. Bioinformatics 30:2843–2851. PubMed PMC
Li H, Durbin R. 2009. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25:1754–1760. PubMed PMC
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R. 2009. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25:2078–2079. PubMed PMC
Lohse M, Bolger AM, Nagel A, Fernie AR, Lunn JE, Stitt M, Usadel B. 2012. RobiNA: a user-friendly, integrated software solution for RNA-Seq-based transcriptomics. Nucleic Acids Res. 40:W622–W627. PubMed PMC
Maddison DR, Guralnick R, Hill A, Reysenbach A-L, McDade LA. 2012. Ramping up biodiversity discovery via online quantum contributions. Trends Ecol Evol. 27:72–77. PubMed
Maia VH, Gitzendanner MA, Soltis PS, Wong GK-S, Soltis DE. 2014. Angiosperm phylogeny based on 18S/26S rDNA sequence data: constructing a large data set using next-generation sequence data. Int J Plant Sci. 175:613–650.
Miller MA, Pfeiffer W, Schwartz T. 2010. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In: Proceedings of the Gateway Computing Environments Workshop (GCE). 14 November 2010. New Orleans (LA): Institute of Electrical and Electronics Engineers (IEEE). p. 45–52.
Milne I, Stephen G, Bayer M, Cock PJA, Pritchard L, Cardle L, Shawand PD, Marshall D. 2013. Using tablet for visual exploration of second-generation sequencing data. Brief Bioinform. 14:193–202. PubMed
Misof B, Liu S, Meusemann K, Peters RS, Donath A, Mayer C, Frandsen PB, Ware J, Flouri T, Beutel RG, et al. 2014. Phylogenomics resolves the timing and pattern of insect evolution. Science 346:763–767. PubMed
Monaghan MT, Wild R, Elliot M, Fujisawa T, Balke M, Inward DJG, Lees DC, Ranaivosolo R, Eggleton P, Barraclough TG, et al. 2009. Accelerated species inventory on Madagascar using coalescent-based models of species delineation. Syst Biol. 58:298–311. PubMed
Myers EW, Sutton GG, Delcher AL, Dew IM, Fasulo DP, Flanigan MJ, Kravitz SA, Mobarry CM, Reinert KH, Remington KA, et al. 2000. A whole-genome assembly of Drosophila. Science 287:2196–2204. PubMed
Novotny V, Miller SE, Baje L, Balagawi S, Basset Y, Cizek L, Craft KJ, Dem F, Drew RAI, Hulcr J, et al. 2010. Guild-specific patterns of species richness and host specialization in plant-herbivore food webs from a tropical forest. J Anim Ecol. 79:1193–1203. PubMed
Parr CS, Guralnick R, Cellinese N, Page RDM. 2012. Evolutionary informatics: unifying knowledge about the diversity of life. Trends Ecol Evol. 27:94–103. PubMed
Peng Y, Leung HCM, Yiu SM, Chin FYL. 2012. IDBA-UD: a de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth. Bioinformatics 28:1420–1428. PubMed
Pons J, Barraclough T, Gomez-Zurita J, Cardoso A, Duran D, Hazell S, Kamoun S, Sumlin W, Vogler A. 2006. Sequence-based species delimitation for the DNA taxonomy of undescribed insects. Syst Biol. 55:595–609. PubMed
Riedel A, Sagata K, Surbakti S, Tänzler R, Balke M. 2013. One hundred and one new species of Trigonopterus weevils from New Guinea. Zookeys 150:1–150. PubMed PMC
Robinson D, Foulds L. 1981. Comparison of phylogenetic trees. Math Biosci. 141:131–141.
Sanderson M. 2003. r8s: inferring absolute rates of molecular evolution and divergence times in the absence of a molecular clock. Bioinformatics 19:301–302. PubMed
Santamaria M, Fosso B, Consiglio A, De Caro G, Grillo G, Licciulli F, Liuni S, Marzano M, Alonso-Alemany D, Valiente G, et al. 2012. Reference databases for taxonomic assignment in metagenomics. Brief Bioinform. 13:682–695. PubMed
Scheffer S, Lewis M, Joshi R. 2006. DNA barcoding applied to invasive leafminers (Diptera: Agromyzidae) in the Philippines. Ann Entomol Soc Am. 99:204–210.
Schliep KP. 2011. phangorn: phylogenetic analysis in R. Bioinformatics 27:592–593. PubMed PMC
Schmieder R, Edwards R. 2011. Quality control and preprocessing of metagenomic datasets. Bioinformatics 27:863–864. PubMed PMC
Simon S, Hadrys H. 2013. A comparative analysis of complete mitochondrial genomes among Hexapoda. Mol Phylogenet Evol. 69:393–403. PubMed
Stamatakis A. 2006. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688–2690. PubMed
Steel M, Penny D. 1993. Distributions of tree comparison metrics—some new results. Syst Biol. 42:126–141.
Stork N. 1987. Guild structure of arthropods from Bornean rain forest trees. Ecol Entomol. 12:69–80.
Tang M, Tan M, Meng G, Yang S, Su X, Liu S, Song W, Li Y, Wu Q, Zhang A, et al. 2014. Multiplex sequencing of pooled mitochondrial genomes-a crucial step toward biodiversity analysis using mito-metagenomics. Nucleic Acids Res. 42:e166. PubMed PMC
Tautz D, Arctander P, Minelli A, Thomas RH, Vogler AP. 2003. A plea for DNA taxonomy. Trends Ecol Evol. 18:70–74.
Taylor HR, Harris WE. 2012. An emergent science on the brink of irrelevance: a review of the past 8 years of DNA barcoding. Mol Ecol Resour. 12:377–388. PubMed
Timmermans MJTN, Dodsworth S, Culverwell CL, Bocak L, Ahrens DTJ, Littlewood D, Pons J, Vogler AP. 2010. Why barcode? High-throughput multiplex sequencing of mitochondrial genomes for molecular systematics. Nucleic Acids Res. 38:e197. PubMed PMC
Timmermans MJTN, Vogler AP. 2012. Phylogenetically informative rearrangements in mitochondrial genomes of Coleoptera, and monophyly of aquatic elateriform beetles (Dryopoidea). Mol Phylogenet Evol. 63:299–304. PubMed
Wernersson R. 2005. FeatureExtract-extraction of sequence annotation made easy. Nucleic Acids Res. 33:W567–W569. PubMed PMC
Wheeler QD, Knapp S, Stevenson DW, Stevenson J, Blum SD, Boom BM, Borisy GG, Buizer JL, De Carvalho MR, Cibrian A, et al. 2012. Mapping the biosphere: exploring species to understand the origin, organization and sustainability of biodiversity. Syst Biodivers. 10:1–20.
Yu DW, Ji Y, Emerson BC, Wang X, Ye C, Yang C, Ding Z. 2012. Biodiversity soup: metabarcoding of arthropods for rapid biodiversity assessment and biomonitoring. Methods Ecol Evol. 3:613–623.
Zhou X, Li Y, Liu S, Yang Q, Su X, Zhou L, Tang M, Fu R, Li J, Huang Q. 2013. Ultra-deep sequencing enables high-fidelity recovery of biodiversity for bulk arthropod samples without PCR amplification. Gigascience 2:4. PubMed PMC
New mitochondrial genomes of 39 soil dwelling Coleoptera from metagenome sequencing
Genome sequencing of Rhinorhipus Lawrence exposes an early branch of the Coleoptera