A 3D microfluidic chip for electrochemical detection of hydrolysed nucleic bases by a modified glassy carbon electrode

. 2015 Jan 22 ; 15 (2) : 2438-52. [epub] 20150122

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid25621613

Modification of carbon materials, especially graphene-based materials, has wide applications in electrochemical detection such as electrochemical lab-on-chip devices. A glassy carbon electrode (GCE) modified with chemically alternated graphene oxide was used as a working electrode (glassy carbon modified by graphene oxide with sulphur containing compounds and Nafion) for detection of nucleobases in hydrolysed samples (HCl pH = 2.9, 100 °C, 1 h, neutralization by NaOH). It was found out that modification, especially with trithiocyanuric acid, increased the sensitivity of detection in comparison with pure GCE. All processes were finally implemented in a microfluidic chip formed with a 3D printer by fused deposition modelling technology. As a material for chip fabrication, acrylonitrile butadiene styrene was chosen because of its mechanical and chemical stability. The chip contained the one chamber for the hydrolysis of the nucleic acid and another for the electrochemical detection by the modified GCE. This chamber was fabricated to allow for replacement of the GCE.

Zobrazit více v PubMed

Figeys D., Pinto D. Lab-on-a-chip: A revolution in biological and medical sciences. Anal. Chem. 2000;72:330A–335A. PubMed

Nejdl L., Kudr J., Cihalova K., Chudobova D., Zurek M., Zalud L., Kopecny L., Burian F., Ruttkay-Nedecky B., Krizkova S., et al. Remote-controlled robotic platform ORPHEUS as a new tool for detection of bacteria in the environment. Electrophoresis. 2014;35:2333–2345. PubMed

Prasek J., Adamek M., Hubalek J., Adam V., Trnkova L., Kizek R. New hydrodynamic electrochemical arrangement for cadmium ions detection using thick-film chemical sensor electrodes. Sensors. 2006;6:1498–1512.

Bonanni A., Loo A.H., Pumera M. Graphene for impedimetric biosensing. TrAC Trends Anal. Chem. 2012;37:12–21.

Krejcova L., Nejdl L., Rodrigo M.A.M., Zurek M., Matousek M., Hynek D., Zitka O., Kopel P., Adam V., Kizek R. 3D printed chip for electrochemical detection of influenza virus labeled with CdS quantum dots. Biosens. Bioelectron. 2014;54:421–427. PubMed

Huang K.J., Niu D.J., Sun J.Y., Han C.H., Wu Z.W., Li Y.L., Xiong X.Q. Novel electrochemical sensor based on functionalized graphene for simultaneous determination of adenine and guanine in DNA. Colloid Surf. B-Biointerfaces. 2011;82:543–549. PubMed

Dubuisson E., Yang Z.Y., Loh K.P. Optimizing Label-Free DNA Electrical Detection on Graphene Platform. Anal. Chem. 2011;83:2452–2460. PubMed

Pumera M. Nanomaterials meet microfluidics. Chem. Commun. 2011;47:5671–5680. PubMed

Yin H.S., Zhou Y.L., Ma Q.A., Ai S.Y., Ju P., Zhu L.S., Lu L.N. Electrochemical oxidation behavior of guanine and adenine on graphene-Nafion composite film modified glassy carbon electrode and the simultaneous determination. Process. Biochem. 2010;45:1707–1712.

Fan Y., Liu J.H., Lu H.T., Zhang Q. Electrochemical behavior and voltammetric determination of paracetamol on Nafion/TiO2-graphene modified glassy carbon electrode. Colloid Surf. B-Biointerfaces. 2011;85:289–292. PubMed

Dreyer D.R., Park S., Bielawski C.W., Ruoff R.S. The chemistry of graphene oxide. Chem. Soc. Rev. 2010;39:228–240. PubMed

Xing X.B., Zheng J.P., Sun C., Li F.J., Zhu D.B., Lei L., Cai X., Wu T. Graphene oxide-deposited microfiber: A new photothermal device for various microbubble generation. Opt. Express. 2013;21:31862–31871. PubMed

Yu S.J., Jiang Y.M., Wang C.M. A polymer composite consists of electrochemical reduced graphene oxide/polyimide/chemical reduced graphene oxide for effective preparation of SnSe by electrochemical atomic layer deposition method with enhanced electrochemical performance and surface area. Electrochim. Acta. 2013;114:430–438.

Borini S., White R., Wei D., Astley M., Haque S., Spigone E., Harris N., Kivioja J., Ryhanen T. Ultrafast Graphene Oxide Humidity Sensors. ACS Nano. 2013;7:11166–11173. PubMed

Sanghavi B., Wolfbeis O., Hirsch T., Swami N. Nanomaterial-based electrochemical sensing of neurological drugs and neurotransmitters. Microchim. Acta. 2014;182:1–41. PubMed PMC

Sanghavi B.J., Sitaula S., Griep M.H., Karna S.P., Ali M.F., Swami N.S. Real-Time Electrochemical Monitoring of Adenosine Triphosphate in the Picomolar to Micromolar Range Using Graphene-Modified Electrodes. Anal. Chem. 2013;85:8158–8165. PubMed PMC

Shi Q.F., Chen M., Diao G.W. Electrocatalytical reduction of m-nitrophenol on reduced graphene oxide modified glassy carbon electrode. Electrochim. Acta. 2013;114:693–699.

Wang L., Lu X.P., Ye Y.J., Sun L.L., Song Y.H. Nickel-cobalt nanostructures coated reduced graphene oxide nanocomposite electrode for nonenzymatic glucose biosensing. Electrochim. Acta. 2013;114:484–493.

Henke K.R., Robertson D., Krepps M.K., Atwood D.A. Chemistry and stability of precipitates from aqueous solutions of 2,4,6-trimercaptotriazine, trisodium salt, nonahydrate (TMT-55) and mercury (II) chloride. Water Res. 2000;34:3005–3013.

Henke K.R., Hutchison A.R., Krepps M.K., Parkin S., Atwood D.A. Chemistry of 2,4,6-trimercapto-1,3,5-triazine (TMT): Acid dissociation constants and group 2 complexes. Inorg. Chem. 2001;40:4443–4447. PubMed

Bailey J.R., Hatfield M.J., Henke K.R., Krepps M.K., Morris J.L., Otieno T., Simonetti K.D., Wall E.A., Atwood D.A. Transition metal complexes of 2,4,6-trimercapto-1,3,5-triazine (TMT): potential precursors to nanoparticulate metal sulfides. J. Organomet. Chem. 2001;623:185–190.

Rosso V.W., Lust D.A., Bernot P.J., Grosso J.A., Modi S.P., Rusowicz A., Sedergran T.C., Simpson J.H., Srivastava S.K., Humora M.J., et al. Removal of palladium from organic reaction mixtures by trimercaptotriazine. Org. Process. Res. Dev. 1997;1:311–314.

Ishihara K., Nakayama M., Kurihara H., Itoh A., Haraguchi H. Removal of palladium(II) from aqueous and organic solutions by polystyrene-bound trimercaptotriazine. Chem. Lett. 2000:1218–1219. doi: 10.1246/cl.2000.1218. DOI

Garrett C.E., Prasad K. The art of meeting palladium specifications in active pharmaceutical ingredients produced by Pd-catalyzed reactions. Adv. Synth. Catal. 2004;346:889–900.

Hirahara H., Mori K., Oishi Y. Direct adhesion of fluorinated rubbers to nickel-plated steel and nitrile rubber during curing using the tetrabutylammonium salt of 1,3,5-triazine-2,4,6-trithiol. J. Adhes. Sci. Technol. 1997;11:1459–1474.

Hirahara H., Aisawa S., Mori K., Narita E., Oishi Y. Study of interfacial chemistry on direct curing adhesion between Ni-P plating and rubber using 1,3,5-triazine-2,4,6-trithiol monosodium salt. Surf. Interface Anal. 2003;35:953–959.

Chen W., Hong S., Xiang B., Luo H.Q., Li M., Li N.B. Corrosion inhibition of copper in hydrochloric acid by coverage with trithiocyanuric acid self-assembled monolayers. Corros. Eng. Sci. Technol. 2013;48:98–107.

Hong S., Chen W., Zhang Y., Luo H.Q., Li M., Li N.B. Investigation of the inhibition effect of trithiocyanuric acid on corrosion of copper in 3.0 wt.% NaCl. Corrosion Sci. 2013;66:308–314.

Hummers W.S., Offeman R.E. Preparation of graphitic oxide. J. Am. Chem. Soc. 1958;80:1339–1339.

Mhamane D., Ramadan W., Fawzy M., Rana A., Dubey M., Rode C., Lefez B., Hannoyer B., Ogale S. From graphite oxide to highly water dispersible functionalized graphene by single step plant extract-induced deoxygenation. Green Chem. 2011;13:1990–1996.

Liang Z.X., Chen W.M., Liu J.G., Wang S.L., Zhou Z.H., Li W.Z., Sun G.Q., Xin Q. FT-IR study of the microstructure of Nafion((R)) membrane. J. Membr. Sci. 2004;233:39–44.

Kopel P., Travnicek Z., Marek J., Korabik M., Mrozinski J. Syntheses and properties of binuclear copper(II) mixed-ligand complexes involving thiodiglycolic acid. The crystal structures of [(phen)(2)Cu(mu-tdga)Cu(phen)](NO3)(2)center dot 5H(2)O and [(H2O)(pmdien)Cu (mu-tdga)Cu(pmdien)(H2O)](ClO4)(2) Polyhedron. 2003;22:411–418.

Kopel P., Travnicek Z., Zboril R., Marek J. Synthesis, X-ray and Mossbauer study of iron(II) complexes with trithiocyanuric acid (ttcH(3)). The X-ray structures of Fe(bpy)(3) (ttcH) center dot 2bpy center dot 7H(2)O and Fe(phen)(3) (ttcH(2))(ClO4) center dot 2CH(3)OH center dot 2H(2)O. Polyhedron. 2004;23:2193–2202.

Ranganathan A., Pedireddi V.R., Rao C.N.R. Hydrothermal synthesis of organic channel structures: 1 : 1 hydrogen-bonded adducts of melamine with cyanuric and trithiocyanuric acids. J. Am. Chem. Soc. 1999;121:1752–1753.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...