Nanocomposite Furcellaran Films-the Influence of Nanofillers on Functional Properties of Furcellaran Films and Effect on Linseed Oil Preservation
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
LQ1601
CEITEC 2020
CZ.02.1.01/0.0/0.0/16_025/0007314
ERDF
LO1401 INWITE
the Czech Ministry of Education
PubMed
31835441
PubMed Central
PMC6960603
DOI
10.3390/polym11122046
PII: polym11122046
Knihovny.cz E-zdroje
- Klíčová slova
- active properties, carbon quantum dots, furcellaran, graphene oxide, linseed oil preservation, maghemite nanoparticles, nanocomposite films,
- Publikační typ
- časopisecké články MeSH
Nanocomposite films that were based on furcellaran (FUR) and nanofillers (carbon quantum dots (CQDs), maghemite nanoparticles (MAN), and graphene oxide (GO)) were obtained by the casting method. The microstructure, as well as the structural, physical, mechanical, antimicrobial, and antioxidant properties of the films was investigated. The incorporation of MAN and GO remarkably increased the tensile strength of furcellaran films. However, the water content, solubility, and elongation at break were significantly reduced by the addition of the nanofillers. Moreover, furcellaran films containing the nanofillers exhibited potent free radical scavenging ability. FUR films with CQDs showed an inhibitory effect on the growth of Staphylococcus aureus and Escherichia coli. The nanocomposite films were used to cover transparent glass containers to study the potential UV-blocking properties in an oil oxidation test and compare with tinted glass. The samples were irradiated for 30 min. with UV-B and then analyzed for oxidation markers (peroxide value, free fatty acids, malondialdehyde content, and degradation of carotenoids). The test showed that covering the transparent glass with MAN films was as effective in inhibiting the oxidation as the use of tinted glass, while the GO and CQDs films did not inhibit oxidation. It can be concluded that the active nanocomposite films can be used as a desirable material for food packaging.
Zobrazit více v PubMed
Ahmed J., Mulla M., Arfat Y.A., Thai T.L.A. Mechanical, thermal, structural and barrier properties of crab shell chitosan/graphene oxide composite films. Food Hydrocoll. 2017;71:141–148. doi: 10.1016/j.foodhyd.2017.05.013. DOI
Elbarbary A.M., Mostafa T.B. Effect of γ-rays on carboxymethyl chitosan for use as antioxidant and preservative coating for peach fruit. Carbohydr. Polym. 2014;104:109–117. doi: 10.1016/j.carbpol.2014.01.021. PubMed DOI
Remya S., Mohan C.O., Bindu J., Sivaraman G.K., Venkateshwarlu G., Ravishankar C.N. Effect of chitosan based active packaging film on the keeping quality of chilled stored barracuda fish. J. Food Sci. Technol. 2016;53:685–693. doi: 10.1007/s13197-015-2018-6. PubMed DOI PMC
Shankar S., Kasapis S., Rhim J.-W. Alginate-based nanocomposite films reinforced with halloysite nanotubes functionalized by alkali treatment and zinc oxide nanoparticles. Int. J. Biol. Macromol. 2018;118:1824–1832. doi: 10.1016/j.ijbiomac.2018.07.026. PubMed DOI
Shankar S., Reddy J.P., Rhim J.-W., Kim H.-Y. Preparation, characterization, and antimicrobial activity of chitin nanofibrils reinforced carrageenan nanocomposite films. Carbohydr. Polym. 2015;117:468–475. doi: 10.1016/j.carbpol.2014.10.010. PubMed DOI
Laos K., Brownsey G.J., Ring S.G. Interactions between furcellaran and the globular proteins bovine serum albumin and β-lactoglobulin. Carbohydr. Polym. 2007;67:116–123. doi: 10.1016/j.carbpol.2006.04.021. DOI
Jamróz E., Kulawik P., Guzik P., Duda I. The verification of intelligent properties of furcellaran films with plant extracts on the stored fresh Atlantic mackerel during storage at 2 °C. Food Hydrocoll. 2019;97:105211. doi: 10.1016/j.foodhyd.2019.105211. DOI
Kulawik P., Jamróz E., Zając M., Guzik P., Tkaczewska J. The effect of furcellaran-gelatin edible coatings with green and pu-erh tea extracts on the microbiological, physicochemical and sensory changes of salmon sushi stored at 4 °C. Food Control. 2019;100:83–91. doi: 10.1016/j.foodcont.2019.01.004. DOI
Jancikova S., Jamróz E., Kulawik P., Tkaczewska J., Dordevic D. Furcellaran/gelatin hydrolysate/rosemary extract composite films as active and intelligent packaging materials. Int. J. Biol. Macromol. 2019;131:19–28. doi: 10.1016/j.ijbiomac.2019.03.050. PubMed DOI
Jamróz E., Kopel P., Juszczak L., Kawecka A., Bytesnikova Z., Milosavljevic V., Makarewicz M. Development of furcellaran-gelatin films with Se-AgNPs as an active packaging system for extension of mini kiwi shelf life. Food Packag. Shelf Life. 2019;21:100339. doi: 10.1016/j.fpsl.2019.100339. DOI
Jamróz E., Kulawik P., Krzyściak P., Talaga-Ćwiertnia K., Juszczak L. Intelligent and active furcellaran-gelatin films containing green or pu-erh tea extracts: Characterization, antioxidant and antimicrobial potential. Int. J. Biol. Macromol. 2019;122:745–757. doi: 10.1016/j.ijbiomac.2018.11.008. PubMed DOI
Namazi H., Belali S. Starch-g-lactic acid/montmorillonite nanocomposite: Synthesis, characterization and controlled drug release study. Starch-Stärke. 2016;68:177–187. doi: 10.1002/star.201400226. DOI
Barkhordari S., Yadollahi M., Namazi H. pH sensitive nanocomposite hydrogel beads based on carboxymethyl cellulose/layered double hydroxide as drug delivery systems. J. Polym. Res. 2014;21:454. doi: 10.1007/s10965-014-0454-z. DOI
Kanmani P., Rhim J.-W. Properties and characterization of bionanocomposite films prepared with various biopolymers and ZnO nanoparticles. Carbohydr. Polym. 2014;106:190–199. doi: 10.1016/j.carbpol.2014.02.007. PubMed DOI
Qin Y., Zhang S., Yu J., Yang J., Xiong L., Sun Q. Effects of chitin nano-whiskers on the antibacterial and physicochemical properties of maize starch films. Carbohydr. Polym. 2016;147:372–378. doi: 10.1016/j.carbpol.2016.03.095. PubMed DOI
Javanbakht S., Namazi H. Solid state photoluminescence thermoplastic starch film containing graphene quantum dots. Carbohydr. Polym. 2017;176:220–226. doi: 10.1016/j.carbpol.2017.08.080. PubMed DOI
Wang Q., Lei J., Ma J., Yuan G., Sun H. Effect of chitosan-carvacrol coating on the quality of Pacific white shrimp during iced storage as affected by caprylic acid. Int. J. Biol. Macromol. 2018;106:123–129. doi: 10.1016/j.ijbiomac.2017.07.180. PubMed DOI
Kanmani P., Rhim J.-W. Physical, mechanical and antimicrobial properties of gelatin based active nanocomposite films containing AgNPs and nanoclay. Food Hydrocoll. 2014;35:644–652. doi: 10.1016/j.foodhyd.2013.08.011. DOI
Iconaru S.L., Prodan A.M., Motelica-Heino M., Sizaret S., Predoi D. Synthesis and characterization of polysaccharide-maghemite composite nanoparticles and their antibacterial properties. Nanoscale Res. Lett. 2012;7:576. doi: 10.1186/1556-276X-7-576. PubMed DOI PMC
Khan Z.M.S.H., Rahman R.S., Shumaila, Islam S., Zulfequar M. Hydrothermal treatment of red lentils for the synthesis of fluorescent carbon quantum dots and its application for sensing Fe3+ Opt. Mater. 2019;91:386–395. doi: 10.1016/j.optmat.2019.03.054. DOI
Kosowska K., Domalik-Pyzik P., Nocuń M., Chłopek J. Chitosan and graphene oxide/reduced graphene oxide hybrid nanocomposites—Evaluation of physicochemical properties. Mater. Chem. Phys. 2018;216:28–36. doi: 10.1016/j.matchemphys.2018.05.076. DOI
Pooresmaeil M., Namazi H. Preparation and characterization of polyvinyl alcohol/β-cyclodextrin/GO-Ag nanocomposite with improved antibacterial and strength properties. Polym. Adv. Technol. 2019;30:447–456. doi: 10.1002/pat.4484. DOI
Wu Z., Huang Y., Xiao L., Lin D., Yang Y., Wang H., Yang Y., Wu D., Chen H., Zhang Q., et al. Physical properties and structural characterization of starch/polyvinyl alcohol/graphene oxide composite films. Int. J. Biol. Macromol. 2019;123:569–575. doi: 10.1016/j.ijbiomac.2018.11.071. PubMed DOI
Wang H., Chen M., Jin C., Niu B., Jiang S., Li X., Jiang S. Antibacterial [2-(Methacryloyloxy) ethyl] Trimethylammonium Chloride Functionalized Reduced Graphene Oxide/Poly(ethylene-co-vinyl alcohol) Multilayer Barrier Film for Food Packaging. J. Agric. Food Chem. 2018;66:732–739. doi: 10.1021/acs.jafc.7b04784. PubMed DOI
Juita J., Dlugogorski B.Z., Kennedy E.M., Mackie J.C. Low temperature oxidation of linseed oil: A review. Fire Sci. Rev. 2012;1:3. doi: 10.1186/2193-0414-1-3. DOI
Parker T.D., Adams D.A., Zhou K., Harris M., Yu L. Fatty Acid Composition and Oxidative Stability of Cold-pressed Edible Seed Oils. J. Food Sci. 2003;68:1240–1243. doi: 10.1111/j.1365-2621.2003.tb09632.x. DOI
Hummers W.S., Offeman R.E. Preparation of graphitic oxide. J. Am. Chem. Soc. 1958;80:1339. doi: 10.1021/ja01539a017. DOI
Vlachova J., Tmejova K., Kopel P., Korabik M., Zitka J., Hynek D., Kynicky J., Adam V., Kizek R. A 3D Microfluidic Chip for Electrochemical Detection of Hydrolysed Nucleic Bases by a Modified Glassy Carbon Electrode. Sensors. 2015;15:2438–2452. doi: 10.3390/s150202438. PubMed DOI PMC
Kudr J., Richtera L., Nejdl L., Xhaxhiu K., Vitek P., Rutkay-Nedecky B., Hynek D., Kopel P., Adam V., Kizek R. Improved Electrochemical Detection of Zinc Ions Using Electrode Modified with Electrochemically Reduced Graphene Oxide. Materials. 2016;9:31. doi: 10.3390/ma9010031. PubMed DOI PMC
Nejdl L., Kudr J., Cihalova K., Chudobova D., Zurek M., Zalud L., Kopecny L., Burian F., Ruttkay-Nedecky B., Krizkova S., et al. Remote-controlled robotic platform ORPHEUS as a new tool for detection of bacteria in the environment. Electrophoresis. 2014;35:2333–2345. doi: 10.1002/elps.201300576. PubMed DOI
Heger Z., Zitka J., Cernei N., Krizkova S., Sztalmachova M., Kopel P., Masarik M., Hodek P., Zitka O., Adam V., et al. 3D-printed biosensor with poly(dimethylsiloxane) reservoir for magnetic separation and quantum dots-based immunolabeling of metallothionein. Electrophoresis. 2015;36:1256–1264. doi: 10.1002/elps.201400559. PubMed DOI
Souza V.G.L., Fernando A.L., Pires J.R.A., Rodrigues P.F., Lopes A.A.S., Fernandes F.M.B. Physical properties of chitosan films incorporated with natural antioxidants. Ind. Crop. Prod. 2017;107:565–572. doi: 10.1016/j.indcrop.2017.04.056. DOI
Mehdizadeh T., Tajik H., Razavi Rohani S.M., Oromiehie A.R. Antibacterial, antioxidant and optical properties of edible starch-chitosan composite film containing Thymus kotschyanus essential oil. Vet. Res. Forum. 2012;3:167–173. PubMed PMC
Behbahani B.A., Shahidi F., Yazdi F.T., Mortazavi S.A., Mohebbi M. Use of Plantago major seed mucilage as a novel edible coating incorporated with Anethum graveolens essential oil on shelf life extension of beef in refrigerated storage. Int. J. Biol. Macromol. 2017;94:515–526. doi: 10.1016/j.ijbiomac.2016.10.055. PubMed DOI
Adilah A.N., Jamilah B., Noranizan M.A., Hanani Z.A.N. Utilization of mango peel extracts on the biodegradable films for active packaging. Food Packag. Shelf Life. 2018;16:1–7. doi: 10.1016/j.fpsl.2018.01.006. DOI
Carter P. Spectrophotometric determination of serum iron at the submicrogram level with a new reagent (ferrozine) Anal. Biochem. 1971;40:450–458. doi: 10.1016/0003-2697(71)90405-2. PubMed DOI
Konieczka P., Rozbicka-Wieczorek A.J., Więsyk E., Smulikowska S., Czauderna M. Improved derivatization of malondialdehyde with 2-thiobarbituric acid for evaluation of oxidative stress in selected tissues of chickens. J. Anim. Feed Sci. 2014;23:190–197. doi: 10.22358/jafs/65709/2014. DOI
Jamróz E., Kulawik P., Kopel P., Balková R., Hynek D., Bytesnikova Z., Gagic M., Milosavljevic V., Adam V. Intelligent and active composite films based on furcellaran: Structural characterization, antioxidant and antimicrobial activities. Food Packag. Shelf Life. 2019;22:100405. doi: 10.1016/j.fpsl.2019.100405. DOI
Rana P., Sharma S., Sharma R., Banerjee K. Apple pectin supported superparamagnetic (γ-Fe2O3) maghemite nanoparticles with antimicrobial potency. Mater. Sci. Energy Technol. 2019;2:15–21. doi: 10.1016/j.mset.2018.09.001. DOI
You Y., Zhang H., Liu Y., Lei B. Transparent sunlight conversion film based on carboxymethyl cellulose and carbon dots. Carbohydr. Polym. 2016;151:245–250. doi: 10.1016/j.carbpol.2016.05.063. PubMed DOI
Salari M., Sowti Khiabani M., Rezaei Mokarram R., Ghanbarzadeh B., Samadi Kafil H. Development and evaluation of chitosan based active nanocomposite films containing bacterial cellulose nanocrystals and silver nanoparticles. Food Hydrocoll. 2018;84:414–423. doi: 10.1016/j.foodhyd.2018.05.037. DOI
Lizundia E., Vilas J.L., Sangroniz A., Etxeberria A. Light and gas barrier properties of PLLA/metallic nanoparticles composite films. Eur. Polym. J. 2017;91:10–20. doi: 10.1016/j.eurpolymj.2017.03.043. DOI
Mohan A., Rajendran S.R., He Q.S., Bazinet L., Udenigwe C.C. Encapsulation of food protein hydrolysates and peptides: A review. RSC Adv. 2015;5:79270–79278. doi: 10.1039/C5RA13419F. DOI
Yamashita S., Sugita-Konishi Y., Shimizu M. In vitro bacteriostatic effects of dietary polysaccharides. Food Sci. Technol. Res. 2001;7:262–264. doi: 10.3136/fstr.7.262. DOI
Raman M., Devi V., Doble M. Biocompatible ι-carrageenan-γ-maghemite nanocomposite for biomedical applications–synthesis, characterization and in vitro anticancer efficacy. J. Nanobiotech. 2015;13:18. doi: 10.1186/s12951-015-0079-3. PubMed DOI PMC
Bing W., Sun H., Yan Z., Ren J., Qu X. Programmed Bacteria Death Induced by Carbon Dots with Different Surface Charge. Small. 2016;12:4713–4718. doi: 10.1002/smll.201600294. PubMed DOI
Li Y.-J., Harroun S.G., Su Y.-C., Huang C.-F., Unnikrishnan B., Lin H.-J., Lin C.-H., Huang C.-C. Synthesis of Self-Assembled Spermidine-Carbon Quantum Dots Effective against Multidrug-Resistant Bacteria. Adv. Healthc. Mater. 2016;5:2545–2554. doi: 10.1002/adhm.201600297. PubMed DOI
Laos K., Lõugas T., Mändmets A., Vokk R. Encapsulation of β-carotene from sea buckthorn (Hippophaë rhamnoides L.) juice in furcellaran beads. Innov. Food Sci. Emerg. Technol. 2007;8:395–398. doi: 10.1016/j.ifset.2007.03.013. DOI
Jamróz E., Kopel P., Juszczak L., Kawecka A., Bytesnikova Z., Milosavljević V., Kucharek M., Makarewicz M., Adam V. Development and characterisation of furcellaran-gelatin films containing SeNPs and AgNPs that have antimicrobial activity. Food Hydrocoll. 2018;83:9–16. doi: 10.1016/j.foodhyd.2018.04.028. DOI
Gu Y.S., Regnier L., McClements D.J. Influence of environmental stresses on stability of oil-in-water emulsions containing droplets stabilized by beta-lactoglobulin-iota-carrageenan membranes. J. Colloid Interface Sci. 2005;286:551–558. doi: 10.1016/j.jcis.2005.01.051. PubMed DOI
Wang H., Liu H., Chu C., She Y., Jiang S., Zhai L., Jiang S., Li X. Diffusion and Antibacterial Properties of Nisin-Loaded Chitosan/Poly (L-Lactic Acid) Towards Development of Active Food Packaging Film. Food Bioprocess Technol. 2015;8:1657–1667. doi: 10.1007/s11947-015-1522-z. DOI
Farhoudian S., Yadollahi M., Namazi H. Facile synthesis of antibacterial chitosan/CuO bio-nanocomposite hydrogel beads. Int. J. Biol. Macromol. 2016;82:837–843. doi: 10.1016/j.ijbiomac.2015.10.018. PubMed DOI
Ketnawa S., Benjakul S., Martínez-Alvarez O., Rawdkuen S. Fish skin gelatin hydrolysates produced by visceral peptidase and bovine trypsin: Bioactivity and stability. Food Chem. 2017;215:383–390. doi: 10.1016/j.foodchem.2016.07.145. PubMed DOI
Hastak V., Bandi S., Kashyap S., Singh S., Luqman S., Lodhe M., Peshwe D., Srivastav A.K. Antioxidant efficacy of chitosan/graphene functionalized superparamagnetic iron oxide nanoparticles. J. Mater. Sci. Mater. Med. 2018;29:154. doi: 10.1007/s10856-018-6163-0. PubMed DOI
Qiu Y., Wang Z., Owens A.C., Kulaots I., Chen Y., Kane A.B., Hurt R.H. Antioxidant chemistry of graphene-based materials and its role in oxidation protection technology. Nanoscale. 2014;6:11744–11755. doi: 10.1039/C4NR03275F. PubMed DOI PMC
Christensen I.L., Sun Y.-P., Juzenas P. Carbon dots as antioxidants and prooxidants. J. Biomed. Nanotechnol. 2011;7:667–676. doi: 10.1166/jbn.2011.1334. PubMed DOI
Li D., Na X., Wang H., Xie Y., Cong S., Song Y., Xu X., Zhu B.-W., Tan M. Fluorescent Carbon Dots Derived from Maillard Reaction Products: Their Properties, Biodistribution, Cytotoxicity, and Antioxidant Activity. J. Agric. Food Chem. 2018;66:1569–1575. doi: 10.1021/acs.jafc.7b05643. PubMed DOI
Suzuki A., Ulfiati R., Masuko M. Evaluation of antioxidants in rapeseed oils for railway application. Tribol. Int. 2009;42:987–994. doi: 10.1016/j.triboint.2009.02.001. DOI
Oomah B.D., Ladet S., Godfrey D.V., Liang J., Girard B. Characteristics of raspberry (Rubus idaeus L.) seed oil. Food Chem. 2000;69:187–193. doi: 10.1016/S0308-8146(99)00260-5. DOI
Oomah B.D., Busson M., Godfrey D.V., Drover J.C.G. Characteristics of hemp (Cannabis sativa L.) seed oil. Food Chem. 2002;76:33–43. doi: 10.1016/S0308-8146(01)00245-X. DOI
Wang H., Zu G., Yang L., Zu Y.-G., Wang H., Zhang Z.-H., Zhang Y., Zhang L., Wang H.-Z. Effects of Heat and Ultraviolet Radiation on the Oxidative Stability of Pine Nut Oil Supplemented with Carnosic Acid. J. Agric. Food Chem. 2011;59:13018–13025. doi: 10.1021/jf203454v. PubMed DOI
Choe E., Min D.B. Mechanisms and Factors for Edible Oil Oxidation. Compr. Rev. Food Sci. Food Saf. 2006;5:169–186. doi: 10.1111/j.1541-4337.2006.00009.x. DOI
Sivakanthan S., Bopitiya D., Madhujith T. A comparative study on stability of different types of coconut (Cocos nucifera) oil against autoxidation and photo-oxidation. Afr. J. Food Sci. 2018;12:216–229.
Haila K., Heinonen M. Action of β-Carotene on Purified Rapeseed Oil During Light Storage. LWT Food Sci. Technol. 1994;27:573–577. doi: 10.1006/fstl.1994.1112. DOI
Yang M., Zheng C., Zhou Q., Huang F., Liu C., Wang H. Minor components and oxidative stability of cold-pressed oil from rapeseed cultivars in China. J. Food Compos. Anal. 2013;29:1–9. doi: 10.1016/j.jfca.2012.08.009. DOI
Soman R., Raman M. HACCP system—Hazard analysis and assessment, based on ISO 22000:2005 methodology. Food Control. 2016;69:191–195. doi: 10.1016/j.foodcont.2016.05.001. DOI
Kourtis L.K., Arvanitoyannis I.S. Implementation of hazard analysis critical control point (HACCP) system to the alcoholic beverages industry. Food Rev. Int. 2001;17:1–44. doi: 10.1081/FRI-100000514. DOI
Aranda A., Zabalza I., Scarpellini S. Economic and environmental analysis of the wine bottle production in Spain by means of life cycle assessment. Int. J. Agric. Resour. Gov. Ecol. 2005;4:178–191. doi: 10.1504/IJARGE.2005.007199. DOI
Wang S., Li X., Rodrigues R., Flynn D. Packaging Influences on Olive Oil Quality: A Review of the Literature. UC Davis Olive Center; Davis, CA, USA: 2014.
Piscopo A., Poiana M. Olive Germplasm—The Olive Cultivation, Table Olive and Olive Oil Industry in Italy. IntechOpen; London, UK: 2012. Packaging and storage of olive oil; pp. 201–222.
Moyano M.J., Heredia F.J., Meléndez-Martínez A.J. The Color of Olive Oils: The Pigments and Their Likely Health Benefits and Visual and Instrumental Methods of Analysis. Compr. Rev. Food Sci. Food Saf. 2010;9:278–291. doi: 10.1111/j.1541-4337.2010.00109.x. PubMed DOI