MUS81 cleaves TOP1-derived lesions and other DNA-protein cross-links

. 2023 May 16 ; 21 (1) : 110. [epub] 20230516

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid37194054

Grantová podpora
206292/Z/17/Z Wellcome Trust - United Kingdom
206292/E/17/Z Wellcome Trust - United Kingdom

Odkazy

PubMed 37194054
PubMed Central PMC10189953
DOI 10.1186/s12915-023-01614-1
PII: 10.1186/s12915-023-01614-1
Knihovny.cz E-zdroje

BACKGROUND: DNA-protein cross-links (DPCs) are one of the most deleterious DNA lesions, originating from various sources, including enzymatic activity. For instance, topoisomerases, which play a fundamental role in DNA metabolic processes such as replication and transcription, can be trapped and remain covalently bound to DNA in the presence of poisons or nearby DNA damage. Given the complexity of individual DPCs, numerous repair pathways have been described. The protein tyrosyl-DNA phosphodiesterase 1 (Tdp1) has been demonstrated to be responsible for removing topoisomerase 1 (Top1). Nevertheless, studies in budding yeast have indicated that alternative pathways involving Mus81, a structure-specific DNA endonuclease, could also remove Top1 and other DPCs. RESULTS: This study shows that MUS81 can efficiently cleave various DNA substrates modified by fluorescein, streptavidin or proteolytically processed topoisomerase. Furthermore, the inability of MUS81 to cleave substrates bearing native TOP1 suggests that TOP1 must be either dislodged or partially degraded prior to MUS81 cleavage. We demonstrated that MUS81 could cleave a model DPC in nuclear extracts and that depletion of TDP1 in MUS81-KO cells induces sensitivity to the TOP1 poison camptothecin (CPT) and affects cell proliferation. This sensitivity is only partially suppressed by TOP1 depletion, indicating that other DPCs might require the MUS81 activity for cell proliferation. CONCLUSIONS: Our data indicate that MUS81 and TDP1 play independent roles in the repair of CPT-induced lesions, thus representing new therapeutic targets for cancer cell sensitisation in combination with TOP1 inhibitors.

Zobrazit více v PubMed

Weickert P, Stingele J. DNA-protein crosslinks and their resolution. Annu Rev Biochem. 2022;91:157–181. doi: 10.1146/annurev-biochem-032620-105820. PubMed DOI

Hacker L, Dorn A, Puchta H. Repair of DNA-protein crosslinks in plants. DNA Repair (Amst) 2020;87:102787. doi: 10.1016/j.dnarep.2020.102787. PubMed DOI

Stingele J, Bellelli R, Boulton SJ. Mechanisms of DNA-protein crosslink repair. Nat Rev Mol Cell Biol. 2017;18(9):563–573. doi: 10.1038/nrm.2017.56. PubMed DOI

Enderle J, Dorn A, Puchta H. DNA- and DNA-protein-crosslink repair in plants. Int J Mol Sci. 2019;20(17):4304. doi: 10.3390/ijms20174304. PubMed DOI PMC

Ide H, Nakano T, Salem AMH, Shoulkamy MI. DNA-protein cross-links: formidable challenges to maintaining genome integrity. DNA Repair (Amst) 2018;71:190–197. doi: 10.1016/j.dnarep.2018.08.024. PubMed DOI

Chen SH, Chan NL, Hsieh TS. New mechanistic and functional insights into DNA topoisomerases. Annu Rev Biochem. 2013;82:139–170. doi: 10.1146/annurev-biochem-061809-100002. PubMed DOI

Wang JC. DNA topoisomerases. Annu Rev Biochem. 1996;65:635–692. doi: 10.1146/annurev.bi.65.070196.003223. PubMed DOI

Pourquier P, Ueng LM, Kohlhagen G, Mazumder A, Gupta M, Kohn KW, Pommier Y. Effects of uracil incorporation, DNA mismatches, and abasic sites on cleavage and religation activities of mammalian topoisomerase I. J Biol Chem. 1997;272(12):7792–7796. doi: 10.1074/jbc.272.12.7792. PubMed DOI

Pourquier P, Pilon AA, Kohlhagen G, Mazumder A, Sharma A, Pommier Y. Trapping of mammalian topoisomerase I and recombinations induced by damaged DNA containing nicks or gaps. Importance of DNA end phosphorylation and camptothecin effects. J Biol Chem. 1997;272(42):26441–26447. doi: 10.1074/jbc.272.42.26441. PubMed DOI

Hsiang YH, Hertzberg R, Hecht S, Liu LF. Camptothecin induces protein-linked DNA breaks via mammalian DNA topoisomerase I. J Biol Chem. 1985;260(27):14873–14878. doi: 10.1016/S0021-9258(17)38654-4. PubMed DOI

Hsiang YH, Lihou MG, Liu LF. Arrest of replication forks by drug-stabilized topoisomerase I-DNA cleavable complexes as a mechanism of cell killing by camptothecin. Cancer Res. 1989;49(18):5077–5082. PubMed

Avemann K, Knippers R, Koller T, Sogo JM. Camptothecin, a specific inhibitor of type I DNA topoisomerase, induces DNA breakage at replication forks. Mol Cell Biol. 1988;8(8):3026–3034. PubMed PMC

Nielsen I, Bentsen IB, Lisby M, Hansen S, Mundbjerg K, Andersen AH, Bjergbaek L. A Flp-nick system to study repair of a single protein-bound nick in vivo. Nat Methods. 2009;6(10):753–757. doi: 10.1038/nmeth.1372. PubMed DOI

Ryan AJ, Squires S, Strutt HL, Evans A, Johnson RT. Different fates of camptothecin-induced replication fork-associated double-strand DNA breaks in mammalian cells. Carcinogenesis. 1994;15(5):823–828. doi: 10.1093/carcin/15.5.823. PubMed DOI

Strumberg D, Pilon AA, Smith M, Hickey R, Malkas L, Pommier Y. Conversion of topoisomerase I cleavage complexes on the leading strand of ribosomal DNA into 5’-phosphorylated DNA double-strand breaks by replication runoff. Mol Cell Biol. 2000;20(11):3977–3987. doi: 10.1128/MCB.20.11.3977-3987.2000. PubMed DOI PMC

Cristini A, Park JH, Capranico G, Legube G, Favre G, Sordet O. DNA-PK triggers histone ubiquitination and signaling in response to DNA double-strand breaks produced during the repair of transcription-blocking topoisomerase I lesions. Nucleic Acids Res. 2016;44(3):1161–1178. doi: 10.1093/nar/gkv1196. PubMed DOI PMC

Li TK, Liu LF. Tumor cell death induced by topoisomerase-targeting drugs. Annu Rev Pharmacol Toxicol. 2001;41:53–77. doi: 10.1146/annurev.pharmtox.41.1.53. PubMed DOI

Enderle J, Dorn A, Beying N, Trapp O, Puchta H. The protease WSS1A, the endonuclease MUS81, and the phosphodiesterase TDP1 are involved in independent pathways of DNA-protein crosslink repair in plants. Plant Cell. 2019;31(4):775–790. doi: 10.1105/tpc.18.00824. PubMed DOI PMC

Interthal H, Chen HJ, Champoux JJ. Human Tdp1 cleaves a broad spectrum of substrates, including phosphoamide linkages. J Biol Chem. 2005;280(43):36518–36528. doi: 10.1074/jbc.M508898200. PubMed DOI PMC

Pouliot JJ, Yao KC, Robertson CA, Nash HA. Yeast gene for a Tyr-DNA phosphodiesterase that repairs topoisomerase I complexes. Science. 1999;286(5439):552–555. doi: 10.1126/science.286.5439.552. PubMed DOI

Yang SW, Burgin AB, Huizenga BN, Robertson CA, Yao KC, Nash HA. A eukaryotic enzyme that can disjoin dead-end covalent complexes between DNA and type I topoisomerases. Proc Natl Acad Sci U S A. 1996;93(21):11534–11539. doi: 10.1073/pnas.93.21.11534. PubMed DOI PMC

Pouliot JJ, Robertson CA, Nash HA. Pathways for repair of topoisomerase I covalent complexes in Saccharomyces cerevisiae. Genes Cells. 2001;6(8):677–687. doi: 10.1046/j.1365-2443.2001.00452.x. PubMed DOI

Liu C, Pouliot JJ, Nash HA. The role of TDP1 from budding yeast in the repair of DNA damage. DNA Repair (Amst) 2004;3(6):593–601. doi: 10.1016/j.dnarep.2004.03.030. PubMed DOI

Vance JR, Wilson TE. Repair of DNA strand breaks by the overlapping functions of lesion-specific and non-lesion-specific DNA 3’ phosphatases. Mol Cell Biol. 2001;21(21):7191–7198. doi: 10.1128/MCB.21.21.7191-7198.2001. PubMed DOI PMC

Stingele J, Schwarz MS, Bloemeke N, Wolf PG, Jentsch S. A DNA-dependent protease involved in DNA-protein crosslink repair. Cell. 2014;158(2):327–338. doi: 10.1016/j.cell.2014.04.053. PubMed DOI

Nitiss J, Wang JC. DNA topoisomerase-targeting antitumor drugs can be studied in yeast. Proc Natl Acad Sci U S A. 1988;85(20):7501–7505. doi: 10.1073/pnas.85.20.7501. PubMed DOI PMC

Pardo B, Moriel-Carretero M, Vicat T, Aguilera A, Pasero P. Homologous recombination and Mus81 promote replication completion in response to replication fork blockage. EMBO Rep. 2020;21(7):e49367. doi: 10.15252/embr.201949367. PubMed DOI PMC

Stingele J, Habermann B, Jentsch S. DNA-protein crosslink repair: proteases as DNA repair enzymes. Trends Biochem Sci. 2015;40(2):67–71. doi: 10.1016/j.tibs.2014.10.012. PubMed DOI

Lopez-Mosqueda J, Maddi K, Prgomet S, Kalayil S, Marinovic-Terzic I, Terzic J, Dikic I. SPRTN is a mammalian DNA-binding metalloprotease that resolves DNA-protein crosslinks. Elife. 2016;5:e21491. doi: 10.7554/eLife.21491. PubMed DOI PMC

Vaz B, Popovic M, Newman JA, Fielden J, Aitkenhead H, Halder S, Singh AN, Vendrell I, Fischer R, Torrecilla I, et al. Metalloprotease SPRTN/DVC1 orchestrates replication-coupled DNA-protein crosslink repair. Mol Cell. 2016;64(4):704–719. doi: 10.1016/j.molcel.2016.09.032. PubMed DOI PMC

Maskey RS, Flatten KS, Sieben CJ, Peterson KL, Baker DJ, Nam HJ, Kim MS, Smyrk TC, Kojima Y, Machida Y, et al. Spartan deficiency causes accumulation of Topoisomerase 1 cleavage complexes and tumorigenesis. Nucleic Acids Res. 2017;45(8):4564–4576. doi: 10.1093/nar/gkx107. PubMed DOI PMC

Liu C, Pouliot JJ, Nash HA. Repair of topoisomerase I covalent complexes in the absence of the tyrosyl-DNA phosphodiesterase Tdp1. Proc Natl Acad Sci U S A. 2002;99(23):14970–14975. doi: 10.1073/pnas.182557199. PubMed DOI PMC

Vance JR, Wilson TE. Yeast Tdp1 and Rad1-Rad10 function as redundant pathways for repairing Top1 replicative damage. Proc Natl Acad Sci U S A. 2002;99(21):13669–13674. doi: 10.1073/pnas.202242599. PubMed DOI PMC

Hartsuiker E, Neale MJ, Carr AM. Distinct requirements for the Rad32(Mre11) nuclease and Ctp1(CtIP) in the removal of covalently bound topoisomerase I and II from DNA. Mol Cell. 2009;33(1):117–123. doi: 10.1016/j.molcel.2008.11.021. PubMed DOI PMC

Zhang YW, Regairaz M, Seiler JA, Agama KK, Doroshow JH, Pommier Y. Poly(ADP-ribose) polymerase and XPF-ERCC1 participate in distinct pathways for the repair of topoisomerase I-induced DNA damage in mammalian cells. Nucleic Acids Res. 2011;39(9):3607–3620. doi: 10.1093/nar/gkq1304. PubMed DOI PMC

Bartosova Z, Krejci L. Nucleases in homologous recombination as targets for cancer therapy. FEBS Lett. 2014;588(15):2446–2456. doi: 10.1016/j.febslet.2014.06.010. PubMed DOI

Bastin-Shanower SA, Fricke WM, Mullen JR, Brill SJ. The mechanism of Mus81-Mms4 cleavage site selection distinguishes it from the homologous endonuclease Rad1-Rad10. Mol Cell Biol. 2003;23(10):3487–3496. doi: 10.1128/MCB.23.10.3487-3496.2003. PubMed DOI PMC

Ciccia A, Constantinou A, West SC. Identification and characterization of the human mus81-eme1 endonuclease. J Biol Chem. 2003;278(27):25172–25178. doi: 10.1074/jbc.M302882200. PubMed DOI

Pepe A, West SC. Substrate specificity of the MUS81-EME2 structure selective endonuclease. Nucleic Acids Res. 2014;42(6):3833–3845. doi: 10.1093/nar/gkt1333. PubMed DOI PMC

Agmon N, Yovel M, Harari Y, Liefshitz B, Kupiec M. The role of Holliday junction resolvases in the repair of spontaneous and induced DNA damage. Nucleic Acids Res. 2011;39(16):7009–7019. doi: 10.1093/nar/gkr277. PubMed DOI PMC

Kaliraman V, Mullen JR, Fricke WM, Bastin-Shanower SA, Brill SJ. Functional overlap between Sgs1-Top3 and the Mms4-Mus81 endonuclease. Genes Dev. 2001;15(20):2730–2740. doi: 10.1101/gad.932201. PubMed DOI PMC

Matos J, Blanco MG, Maslen S, Skehel JM, West SC. Regulatory control of the resolution of DNA recombination intermediates during meiosis and mitosis. Cell. 2011;147(1):158–172. doi: 10.1016/j.cell.2011.08.032. PubMed DOI PMC

Falquet B, Rass U. Structure-specific endonucleases and the resolution of chromosome underreplication. Genes (Basel) 2019;10(3):232. doi: 10.3390/genes10030232. PubMed DOI PMC

Castor D, Nair N, Déclais AC, Lachaud C, Toth R, Macartney TJ, Lilley DM, Arthur JS, Rouse J. Cooperative control of holliday junction resolution and DNA repair by the SLX1 and MUS81-EME1 nucleases. Mol Cell. 2013;52(2):221–233. doi: 10.1016/j.molcel.2013.08.036. PubMed DOI PMC

Hanada K, Budzowska M, Modesti M, Maas A, Wyman C, Essers J, Kanaar R. The structure-specific endonuclease Mus81-Eme1 promotes conversion of interstrand DNA crosslinks into double-strands breaks. EMBO J. 2006;25(20):4921–4932. doi: 10.1038/sj.emboj.7601344. PubMed DOI PMC

Liu LF, Desai SD, Li TK, Mao Y, Sun M, Sim SP. Mechanism of action of camptothecin. Ann N Y Acad Sci. 2000;922:1–10. doi: 10.1111/j.1749-6632.2000.tb07020.x. PubMed DOI

Delgado JL, Hsieh CM, Chan NL, Hiasa H. Topoisomerases as anticancer targets. Biochem J. 2018;475(2):373–398. doi: 10.1042/BCJ20160583. PubMed DOI PMC

Buzun K, Bielawska A, Bielawski K, Gornowicz A. DNA topoisomerases as molecular targets for anticancer drugs. J Enzyme Inhib Med Chem. 2020;35(1):1781–1799. doi: 10.1080/14756366.2020.1821676. PubMed DOI PMC

Dexheimer TS, Stephen AG, Fivash MJ, Fisher RJ, Pommier Y. The DNA binding and 3’-end preferential activity of human tyrosyl-DNA phosphodiesterase. Nucleic Acids Res. 2010;38(7):2444–2452. doi: 10.1093/nar/gkp1206. PubMed DOI PMC

Chang JH, Kim JJ, Choi JM, Lee JH, Cho Y. Crystal structure of the Mus81-Eme1 complex. Genes Dev. 2008;22(8):1093–1106. doi: 10.1101/gad.1618708. PubMed DOI PMC

Chen XB, Melchionna R, Denis CM, Gaillard PHL, Blasina A, Van de Weyer I, Boddy MN, Russell P, Vialard J, McGowan CH. Human Mus81-associated endonuclease cleaves Holliday junctions in vitro. Mol Cell. 2001;8(5):1117–1127. doi: 10.1016/S1097-2765(01)00375-6. PubMed DOI

Redinbo MR, Stewart L, Kuhn P, Champoux JJ, Hol WG. Crystal structures of human topoisomerase I in covalent and noncovalent complexes with DNA. Science. 1998;279(5356):1504–1513. doi: 10.1126/science.279.5356.1504. PubMed DOI

Staker BL, Hjerrild K, Feese MD, Behnke CA, Burgin AB, Stewart L. The mechanism of topoisomerase I poisoning by a camptothecin analog. Proc Natl Acad Sci U S A. 2002;99(24):15387–15392. doi: 10.1073/pnas.242259599. PubMed DOI PMC

Svejstrup JQ, Christiansen K, Andersen AH, Lund K, Westergaard O. Minimal DNA duplex requirements for topoisomerase I-mediated cleavage in vitro. J Biol Chem. 1990;265(21):12529–12535. doi: 10.1016/S0021-9258(19)38377-2. PubMed DOI

Fleury F, Ianoul A, Kryukov E, Sukhanova A, Kudelina I, Wynne-Jones A, Bronstein IB, Maizieres M, Berjot M, Dodson GG, et al. Raman and CD spectroscopy of recombinant 68-kDa DNA human topoisomerase I and its complex with suicide DNA-substrate. Biochemistry. 1998;37(41):14630–14642. doi: 10.1021/bi9806495. PubMed DOI

Debéthune L, Kohlhagen G, Grandas A, Pommier Y. Processing of nucleopeptides mimicking the topoisomerase I-DNA covalent complex by tyrosyl-DNA phosphodiesterase. Nucleic Acids Res. 2002;30(5):1198–1204. doi: 10.1093/nar/30.5.1198. PubMed DOI PMC

Davies DR, Interthal H, Champoux JJ, Hol WG. Crystal structure of a transition state mimic for Tdp1 assembled from vanadate, DNA, and a topoisomerase I-derived peptide. Chem Biol. 2003;10(2):139–147. doi: 10.1016/S1074-5521(03)00021-8. PubMed DOI

Sun Y, Chen J, Huang SN, Su YP, Wang W, Agama K, Saha S, Jenkins LM, Pascal JM, Pommier Y. PARylation prevents the proteasomal degradation of topoisomerase I DNA-protein crosslinks and induces their deubiquitylation. Nat Commun. 2021;12(1):5010. doi: 10.1038/s41467-021-25252-9. PubMed DOI PMC

Quievryn G, Zhitkovich A. Loss of DNA-protein crosslinks from formaldehyde-exposed cells occurs through spontaneous hydrolysis and an active repair process linked to proteosome function. Carcinogenesis. 2000;21(8):1573–1580. doi: 10.1093/carcin/21.8.1573. PubMed DOI

Baker DJ, Wuenschell G, Xia L, Termini J, Bates SE, Riggs AD, O'Connor TR. Nucleotide excision repair eliminates unique DNA-protein cross-links from mammalian cells. J Biol Chem. 2007;282(31):22592–22604. doi: 10.1074/jbc.M702856200. PubMed DOI

Desai SD, Liu LF, Vazquez-Abad D, D’Arpa P. Ubiquitin-dependent destruction of topoisomerase I is stimulated by the antitumor drug camptothecin. J Biol Chem. 1997;272(39):24159–24164. doi: 10.1074/jbc.272.39.24159. PubMed DOI

Lin CP, Ban Y, Lyu YL, Liu LF. Proteasome-dependent processing of topoisomerase I-DNA adducts into DNA double strand breaks at arrested replication forks. J Biol Chem. 2009;284(41):28084–28092. doi: 10.1074/jbc.M109.030601. PubMed DOI PMC

Sakasai R, Teraoka H, Tibbetts RS. Proteasome inhibition suppresses DNA-dependent protein kinase activation caused by camptothecin. DNA Repair (Amst) 2010;9(1):76–82. doi: 10.1016/j.dnarep.2009.10.008. PubMed DOI PMC

Tomicic MT, Kaina B. Topoisomerase degradation, DSB repair, p53 and IAPs in cancer cell resistance to camptothecin-like topoisomerase I inhibitors. Biochim Biophys Acta. 2013;1835(1):11–27. PubMed

Stingele J, Bellelli R, Alte F, Hewitt G, Sarek G, Maslen SL, Tsutakawa SE, Borg A, Kjær S, Tainer JA, et al. Mechanism and regulation of DNA-protein crosslink repair by the DNA-dependent metalloprotease SPRTN. Mol Cell. 2016;64(4):688–703. doi: 10.1016/j.molcel.2016.09.031. PubMed DOI PMC

Serbyn N, Noireterre A, Bagdiul I, Plank M, Michel AH, Loewith R, Kornmann B, Stutz F. The aspartic protease Ddi1 contributes to DNA-protein crosslink repair in yeast. Mol Cell. 2020;77(5):1066–1079.e1069. doi: 10.1016/j.molcel.2019.12.007. PubMed DOI

Chavdarova M, Marini V, Sisakova A, Sedlackova H, Vigasova D, Brill SJ, Lisby M, Krejci L. Srs2 promotes Mus81-Mms4-mediated resolution of recombination intermediates. Nucleic Acids Res. 2015;43(7):3626–3642. doi: 10.1093/nar/gkv198. PubMed DOI PMC

Matulova P, Marini V, Burgess RC, Sisakova A, Kwon Y, Rothstein R, Sung P, Krejci L. Cooperativity of Mus81.Mms4 with Rad54 in the resolution of recombination and replication intermediates. J Biol Chem. 2009;284(12):7733–7745. doi: 10.1074/jbc.M806192200. PubMed DOI PMC

Di Marco S, Hasanova Z, Kanagaraj R, Chappidi N, Altmannova V, Menon S, Sedlackova H, Langhoff J, Surendranath K, Hühn D, et al. RECQ5 helicase cooperates with MUS81 endonuclease in processing stalled replication forks at common fragile sites during mitosis. Mol Cell. 2017;66(5):658–671.e658. doi: 10.1016/j.molcel.2017.05.006. PubMed DOI

Altmannova V, Eckert-Boulet N, Arneric M, Kolesar P, Chaloupkova R, Damborsky J, Sung P, Zhao X, Lisby M, Krejci L. Rad52 SUMOylation affects the efficiency of the DNA repair. Nucleic Acids Res. 2010;38(14):4708–4721. doi: 10.1093/nar/gkq195. PubMed DOI PMC

Sarangi P, Bartosova Z, Altmannova V, Holland C, Chavdarova M, Lee SE, Krejci L, Zhao X. Sumoylation of the Rad1 nuclease promotes DNA repair and regulates its DNA association. Nucleic Acids Res. 2014;42(10):6393–6404. doi: 10.1093/nar/gku300. PubMed DOI PMC

Vigasova D, Sarangi P, Kolesar P, Vlasáková D, Slezakova Z, Altmannova V, Nikulenkov F, Anrather D, Gith R, Zhao X, et al. Lif1 SUMOylation and its role in non-homologous end-joining. Nucleic Acids Res. 2013;41(10):5341–5353. doi: 10.1093/nar/gkt236. PubMed DOI PMC

Riccio AA, Schellenberg MJ, Williams RS. Molecular mechanisms of topoisomerase 2 DNA-protein crosslink resolution. Cell Mol Life Sci. 2020;77(1):81–91. doi: 10.1007/s00018-019-03367-z. PubMed DOI PMC

Schellenberg MJ, Lieberman JA, Herrero-Ruiz A, Butler LR, Williams JG, Muñoz-Cabello AM, Mueller GA, London RE, Cortés-Ledesma F, Williams RS. ZATT (ZNF451)-mediated resolution of topoisomerase 2 DNA-protein cross-links. Science. 2017;357(6358):1412–1416. doi: 10.1126/science.aam6468. PubMed DOI PMC

Regairaz M, Zhang YW, Fu H, Agama KK, Tata N, Agrawal S, Aladjem MI, Pommier Y. Mus81-mediated DNA cleavage resolves replication forks stalled by topoisomerase I-DNA complexes. J Cell Biol. 2011;195(5):739–749. doi: 10.1083/jcb.201104003. PubMed DOI PMC

Miao ZH, Agama K, Sordet O, Povirk L, Kohn KW, Pommier Y. Hereditary ataxia SCAN1 cells are defective for the repair of transcription-dependent topoisomerase I cleavage complexes. DNA Repair (Amst) 2006;5(12):1489–1494. doi: 10.1016/j.dnarep.2006.07.004. PubMed DOI

Ray Chaudhuri A, Hashimoto Y, Herrador R, Neelsen KJ, Fachinetti D, Bermejo R, Cocito A, Costanzo V, Lopes M. Topoisomerase I poisoning results in PARP-mediated replication fork reversal. Nat Struct Mol Biol. 2012;19(4):417–423. doi: 10.1038/nsmb.2258. PubMed DOI

Cong K, Cantor SB. Exploiting replication gaps for cancer therapy. Mol Cell. 2022;82(13):2363–2369. doi: 10.1016/j.molcel.2022.04.023. PubMed DOI PMC

Zhang H, Xiong Y, Su D, Wang C, Srivastava M, Tang M, Feng X, Huang M, Chen Z, Chen J. TDP1-independent pathways in the process and repair of TOP1-induced DNA damage. Nat Commun. 2022;13(1):4240. doi: 10.1038/s41467-022-31801-7. PubMed DOI PMC

Palma A, Pugliese GM, Murfuni I, Marabitti V, Malacaria E, Rinalducci S, Minoprio A, Sanchez M, Mazzei F, Zolla L, et al. Phosphorylation by CK2 regulates MUS81/EME1 in mitosis and after replication stress. Nucleic Acids Res. 2018;46(10):5109–5124. doi: 10.1093/nar/gky280. PubMed DOI PMC

Wyatt HD, Laister RC, Martin SR, Arrowsmith CH, West SC. The SMX DNA repair tri-nuclease. Mol Cell. 2017;65(5):848–860.e811. doi: 10.1016/j.molcel.2017.01.031. PubMed DOI PMC

Barker S, Weinfeld M, Murray D. DNA-protein crosslinks: their induction, repair, and biological consequences. Mutat Res. 2005;589(2):111–135. doi: 10.1016/j.mrrev.2004.11.003. PubMed DOI

Li F, Jiang T, Li Q, Ling X. Camptothecin (CPT) and its derivatives are known to target topoisomerase I (Top1) as their mechanism of action: did we miss something in CPT analogue molecular targets for treating human disease such as cancer? Am J Cancer Res. 2017;7(12):2350–2394. PubMed PMC

Mabb AM, Simon JM, King IF, Lee HM, An LK, Philpot BD, Zylka MJ. Topoisomerase 1 regulates gene expression in neurons through cleavage complex-dependent and -independent mechanisms. PLoS One. 2016;11(5):e0156439. doi: 10.1371/journal.pone.0156439. PubMed DOI PMC

Nakano T, Morishita S, Katafuchi A, Matsubara M, Horikawa Y, Terato H, Salem AM, Izumi S, Pack SP, Makino K, et al. Nucleotide excision repair and homologous recombination systems commit differentially to the repair of DNA-protein crosslinks. Mol Cell. 2007;28(1):147–158. doi: 10.1016/j.molcel.2007.07.029. PubMed DOI

Cannavo E, Cejka P. Sae2 promotes dsDNA endonuclease activity within Mre11-Rad50-Xrs2 to resect DNA breaks. Nature. 2014;514(7520):122–125. doi: 10.1038/nature13771. PubMed DOI

Cortes Ledesma F, El Khamisy SF, Zuma MC, Osborn K, Caldecott KW. A human 5’-tyrosyl DNA phosphodiesterase that repairs topoisomerase-mediated DNA damage. Nature. 2009;461(7264):674–678. doi: 10.1038/nature08444. PubMed DOI

Zeng Z, Sharma A, Ju L, Murai J, Umans L, Vermeire L, Pommier Y, Takeda S, Huylebroeck D, Caldecott KW, et al. TDP2 promotes repair of topoisomerase I-mediated DNA damage in the absence of TDP1. Nucleic Acids Res. 2012;40(17):8371–8380. doi: 10.1093/nar/gks622. PubMed DOI PMC

Tsuda M, Kitamasu K, Kumagai C, Sugiyama K, Nakano T, Ide H. Tyrosyl-DNA phosphodiesterase 2 (TDP2) repairs topoisomerase 1 DNA-protein crosslinks and 3’-blocking lesions in the absence of tyrosyl-DNA phosphodiesterase 1 (TDP1) DNA Repair (Amst) 2020;91–92:102849. doi: 10.1016/j.dnarep.2020.102849. PubMed DOI

Lenz HJ. Clinical update: proteasome inhibitors in solid tumors. Cancer Treat Rev. 2003;29(Suppl 1):41–48. doi: 10.1016/S0305-7372(03)00082-3. PubMed DOI

Cusack JC, Liu R, Houston M, Abendroth K, Elliott PJ, Adams J, Baldwin AS. Enhanced chemosensitivity to CPT-11 with proteasome inhibitor PS-341: implications for systemic nuclear factor-kappaB inhibition. Cancer Res. 2001;61(9):3535–3540. PubMed

Naumann K, Schmich K, Jaeger C, Kratz F, Merfort I. Noxa/Mcl-1 balance influences the effect of the proteasome inhibitor MG-132 in combination with anticancer agents in pancreatic cancer cell lines. Anticancer Drugs. 2012;23(6):614–626. doi: 10.1097/CAD.0b013e3283504e53. PubMed DOI

Talukdar A, Kundu B, Sarkar D, Goon S, Mondal MA. Topoisomerase I inhibitors: challenges, progress and the road ahead. Eur J Med Chem. 2022;236:114304. doi: 10.1016/j.ejmech.2022.114304. PubMed DOI

Marini V, Krejci L. Unwinding of synthetic replication and recombination substrates by Srs2. DNA Repair (Amst) 2012;11(10):789–798. doi: 10.1016/j.dnarep.2012.05.007. PubMed DOI PMC

Andersen AH, Christiansen K, Westergaard O. Uncoupling of topoisomerase-mediated DNA cleavage and religation. Methods Mol Biol. 2001;95:101–117. PubMed

Interthal H, Pouliot JJ, Champoux JJ. The tyrosyl-DNA phosphodiesterase Tdp1 is a member of the phospholipase D superfamily. Proc Natl Acad Sci U S A. 2001;98(21):12009–12014. doi: 10.1073/pnas.211429198. PubMed DOI PMC

Knudsen BR, Straub T, Boege F. Separation and functional analysis of eukaryotic DNA topoisomerases by chromatography and electrophoresis. J Chromatogr B Biomed Appl. 1996;684(1–2):307–321. doi: 10.1016/0378-4347(96)00152-1. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...