Label-Free DNA Biosensor Using Modified Reduced Graphene Oxide Platform as a DNA Methylation Assay
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
AF-IGA2019-IP059
Mendelova Univerzita v Brně
LQ1601
Central European Institute of Technology
PubMed
33153095
PubMed Central
PMC7663213
DOI
10.3390/ma13214936
PII: ma13214936
Knihovny.cz E-zdroje
- Klíčová slova
- DNA methylation, biomedical applications, electrochemical biosensor, nanomaterials, rGO,
- Publikační typ
- časopisecké články MeSH
This work reports the use of modified reduced graphene oxide (rGO) as a platform for a label-free DNA-based electrochemical biosensor as a possible diagnostic tool for a DNA methylation assay. The biosensor sensitivity was enhanced by variously modified rGO. The rGO decorated with three nanoparticles (NPs)-gold (AuNPs), silver (AgNPs), and copper (CuNPs)-was implemented to increase the electrode surface area. Subsequently, the thiolated DNA probe (single-stranded DNA, ssDNA-1) was hybridized with the target DNA sequence (ssDNA-2). After the hybridization, the double-stranded DNA (dsDNA) was methylated by M.SssI methyltransferase (MTase) and then digested via a HpaII endonuclease specific site sequence of CpG (5'-CCGG-3') islands. For monitoring the MTase activity, differential pulse voltammetry (DPV) was used, whereas the best results were obtained by rGO-AuNPs. This assay is rapid, cost-effective, sensitive, selective, highly specific, and displays a low limit of detection (LOD) of 0.06 U·mL-1. Lastly, this study was enriched with the real serum sample, where a 0.19 U·mL-1 LOD was achieved. Moreover, the developed biosensor offers excellent potential in future applications in clinical diagnostics, as this approach can be used in the design of other biosensors.
Zobrazit více v PubMed
Krejcova L., Richtera L., Hynek D., Labuda J., Adam V. Current trends in electrochemical sensing and biosensing of DNA methylation. Biosens. Bioelectron. 2017;97:384–399. doi: 10.1016/j.bios.2017.06.004. PubMed DOI
Yin H., Xu Z., Wang M., Zhang X., Ai S. An electrochemical biosensor for assay of DNA methyltransferase activity and screening of inhibitor. Electrochim. Acta. 2013;89:530–536. doi: 10.1016/j.electacta.2012.11.093. DOI
Chen X., Huang J., Zhang S., Mo F., Su S., Li Y., Fang L., Deng J., Huang H., Luo Z., et al. Electrochemical Biosensor for DNA Methylation Detection through Hybridization Chain-Amplified Reaction Coupled with a Tetrahedral DNA Nanostructure. ACS Appl. Mater. Interfaces. 2019;11:3745–3752. doi: 10.1021/acsami.8b20144. PubMed DOI
Zhu B., Booth M.A., Shepherd P., Sheppard A., Travas-Sejdic J. Distinguishing cytosine methylation using electrochemical, label-free detection of DNA hybridization and ds-targets. Biosens. Bioelectron. 2015;64:74–80. doi: 10.1016/j.bios.2014.08.049. PubMed DOI
Yin H., Yin H., Xu Z., Chen L., Zhang D., Ai S. An electrochemical assay for DNA methylation, methyltransferase activity and inhibitor screening based on methyl binding domain protein. Biosens. Bioelectron. 2013;41:492–497. doi: 10.1016/j.bios.2012.09.010. PubMed DOI
Chen S., Su J., Zhao Z., Shao Y., Dou Y., Li F., Deng W., Shi J., Li Q., Zuo X., et al. DNA framework-supported electrochemical analysis of DNA methylation for prostate cancers. Nano Lett. 2020;20:7028–7035. doi: 10.1021/acs.nanolett.0c01898. PubMed DOI
Zhang Q., Wu Y., Xu Q., Ma F., Zhang C.-Y. Recent advances in biosensors for in vitro detection and in vivo imaging of DNA methylation. Biosens. Bioelectron. 2020:112712. doi: 10.1016/j.bios.2020.112712. PubMed DOI
Huang J., Zhang S., Mo F., Su S., Chen X., Li Y., Fang L., Huang H., Deng J., Liu H., et al. An electrochemical DNA biosensor analytic technique for identifying DNA methylation specific sites and quantify DNA methylation level. Biosens. Bioelectron. 2019;127:155–160. doi: 10.1016/j.bios.2018.12.022. PubMed DOI
Mascini M., Tombelli S. Biosensors for biomarkers in medical diagnostics. Biomarkers. 2008;13:637–657. doi: 10.1080/13547500802645905. PubMed DOI
Mehrotra P. Biosensors and their applications—A review. J. Oral Biol. Craniofacial Res. 2016;6:153–159. doi: 10.1016/j.jobcr.2015.12.002. PubMed DOI PMC
Gao L., Lian C., Zhou Y., Yan L., Li Q., Zhang C., Chen L., Chen K. Graphene oxide–DNA based sensors. Biosens. Bioelectron. 2014;60:22–29. doi: 10.1016/j.bios.2014.03.039. PubMed DOI
Guex L.G., Sacchi B., Peuvot K.F., Andersson R.L., Pourrahimi A.M., Ström V., Farris S., Olsson R.T. Experimental review: Chemical reduction of graphene oxide (GO) to reduced graphene oxide (rGO) by aqueous chemistry. Nanoscale. 2017;9:9562–9571. doi: 10.1039/C7NR02943H. PubMed DOI
Shin H., Kim K.K., Benayad A., Yoon S., Park H.K., Jung I., Jin M.H., Jeong H., Kim J.M., Choi J., et al. Efficient Reduction of Graphite Oxide by Sodium Borohydride and Its Effect on Electrical Conductance. Adv. Funct. Mater. 2009;19:1987–1992. doi: 10.1002/adfm.200900167. DOI
Zhou M., Zhai Y., Dong S. Electrochemical Sensing and Biosensing Platform Based on Chemically Reduced Graphene Oxide. Anal. Chem. 2009;81:5603–5613. doi: 10.1021/ac900136z. PubMed DOI
Liu P., Wang D., Zhou Y., Wang H., Yin H., Ai S. DNA methyltransferase detection based on digestion triggering the combination of poly adenine DNA with gold nanoparticles. Biosens. Bioelectron. 2016;80:74–78. doi: 10.1016/j.bios.2015.12.100. PubMed DOI
Kokkinos C. Electrochemical DNA Biosensors Based on Labeling with Nanoparticles. Nanomaterials. 2019;9:1361. doi: 10.3390/nano9101361. PubMed DOI PMC
Qing Z., Bai A., Xing S., Zou Z., He X., Wang K., Yang R. Progress in biosensor based on DNA-templated copper nanoparticles. Biosens. Bioelectron. 2019;137:96–109. doi: 10.1016/j.bios.2019.05.014. PubMed DOI
Zhang X., Guo Q., Cui D.-X. Recent Advances in Nanotechnology Applied to Biosensors. Sensors. 2009;9:1033–1053. doi: 10.3390/s90201033. PubMed DOI PMC
Bao J., Geng X., Hou C., Zhao Y., Huo D., Wang Y., Wang Z., Zeng Y., Yang M., Fa H.-B. A simple and universal electrochemical assay for sensitive detection of DNA methylation, methyltransferase activity and screening of inhibitors. J. Electroanal. Chem. 2018;814:144–152. doi: 10.1016/j.jelechem.2018.02.060. DOI
Jamróz E., Kopel P., Tkaczewska J., Dordević D., Jančíková S., Kulawik P., Milosavljevic V., Dolezelikova K., Smerkova K., Svec P., et al. Nanocomposite Furcellaran Films—The Influence of Nanofillers on Functional Properties of Furcellaran Films and Effect on Linseed Oil Preservation. Polymers. 2019;11:2046. doi: 10.3390/polym11122046. PubMed DOI PMC
Besenhard J.O. Inorganic Reactions and Methods. Wiley-VCH Publishers; Weinheim, Germany: 1990. Preparation of Graphite Oxides; pp. 261–262.
Gao W., Alemany L.B., Ci L., Ajayan P.M. New insights into the structure and reduction of graphite oxide. Nat. Chem. 2009;1:403–408. doi: 10.1038/nchem.281. PubMed DOI
Goncalves G., Marques P.A.A.P., Granadeiro C.M., Nogueira H.I.S., Singh M.K., Graácio J. Surface Modification of Graphene Nanosheets with Gold Nanoparticles: The Role of Oxygen Moieties at Graphene Surface on Gold Nucleation and Growth. Chem. Mater. 2009;21:4796–4802. doi: 10.1021/cm901052s. DOI
Keighley S.D., Li P., Estrela P., Migliorato P. Optimization of DNA immobilization on gold electrodes for label-free detection by electrochemical impedance spectroscopy. Biosens. Bioelectron. 2008;23:1291–1297. doi: 10.1016/j.bios.2007.11.012. PubMed DOI
Bizzotto D., Burgess I.J., Doneux T., Sagara T., Yu H.-Z. Beyond Simple Cartoons: Challenges in Characterizing Electrochemical Biosensor Interfaces. ACS Sensors. 2018;3:5–12. doi: 10.1021/acssensors.7b00840. PubMed DOI
Macdonald J.R., Johnson W.B. Fundamentals of Impedance Spectroscopy. Impedance Spectroscopy. 2005;1:1–26. doi: 10.1002/0471716243.ch1. DOI
Jing X., Cao X., Wang L., Lan T., Li Y., Xie G. DNA-AuNPs based signal amplification for highly sensitive detection of DNA methylation, methyltransferase activity and inhibitor screening. Biosens. Bioelectron. 2014;58:40–47. doi: 10.1016/j.bios.2014.02.035. PubMed DOI
Liu S., Wu P., Li W., Zhang H., Cai C. An electrochemical approach for detection of DNA methylation and assay of the methyltransferase activity. Chem. Commun. 2011;47:2844–2846. doi: 10.1039/c0cc05153e. PubMed DOI
Xu Z., Wang M., Zhou T., Yin H., Ai S. Electrochemical biosensing method for the detection of DNA methylation and assay of the methyltransferase activity. Sensors Actuators B Chem. 2013;178:412–417. doi: 10.1016/j.snb.2012.12.124. DOI
Su J., He X., Wang Y., Zou Z., Chen Z., Yan G. A sensitive signal-on assay for MTase activity based on methylation-responsive hairpin-capture DNA probe. Biosens. Bioelectron. 2012;36:123–128. doi: 10.1016/j.bios.2012.04.012. PubMed DOI
Wang M., Xu Z., Chen L., Yin H., Ai S. Electrochemical Immunosensing Platform for DNA Methyltransferase Activity Analysis and Inhibitor Screening. Anal. Chem. 2012;84:9072–9078. doi: 10.1021/ac301620m. PubMed DOI
Wang G.L., Zhou L.Y., Luo H.Q., Li N.B. Electrochemical strategy for sensing DNA methylation and DNA methyltransferase activity. Anal. Chim. Acta. 2013;768:76–81. doi: 10.1016/j.aca.2013.01.026. PubMed DOI
Li W., Wu P., Zhang H., Cai C. Signal Amplification of Graphene Oxide Combining with Restriction Endonuclease for Site-Specific Determination of DNA Methylation and Assay of Methyltransferase Activity. Anal. Chem. 2012;84:7583–7590. doi: 10.1021/ac301990f. PubMed DOI
Huang B., Ji L., Liang B., Cao Q., Tu T., Ye X. A simple and low-cost screen printed electrode for hepatocellular carcinoma methylation detection. Analyst. 2019;144:3282–3288. doi: 10.1039/C9AN00191C. PubMed DOI
DNA Methylation in Solid Tumors: Functions and Methods of Detection