Application of Raney Al-Ni Alloy for Simple Hydrodehalogenation of Diclofenac and Other Halogenated Biocidal Contaminants in Alkaline Aqueous Solution under Ambient Conditions
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
35683235
PubMed Central
PMC9182476
DOI
10.3390/ma15113939
PII: ma15113939
Knihovny.cz E-zdroje
- Klíčová slova
- NaBH4, biocide, drug, hydrometallurgy, nickel alloy, reductive dechlorination, water treatment,
- Publikační typ
- časopisecké články MeSH
Raney Al-Ni contains 62% of Ni2Al3 and 38% NiAl3 crystalline phases. Its applicability has been studied within an effective hydrodehalogenation of hardly biodegradable anti-inflammatory drug diclofenac in model aqueous concentrates and, subsequently, even in real hospital wastewater with the aim of transforming them into easily biodegradable products. In model aqueous solution, complete hydrodechlorination of 2 mM aqueous diclofenac solution (0.59 g L-1) yielding the 2-anilinophenylacetate was achieved in less than 50 min at room temperature and ambient pressure using only 9.7 g L-1 of KOH and 1.65 g L-1 of Raney Al-Ni alloy. The dissolving of Al during the hydrodehalogenation process is accompanied by complete consumption of NiAl3 crystalline phase and partial depletion of Ni2Al3. A comparison of the hydrodehalogenation ability of a mixture of diclofenac and other widely used halogenated aromatic or heterocyclic biocides in model aqueous solution using Al-Ni was performed to verify the high hydrodehalogenation activity for each of the used halogenated contaminants. Remarkably, the robustness of Al-Ni-based hydrodehalogenation was demonstrated even for the removal of non-biodegradable diclofenac in real hospital wastewater with high chloride and nitrate content. After removal of the insoluble part of the Al-Ni for subsequent hydrometallurgical recycling, the low quantity of residual Ni was removed together with insoluble Al(OH)3 obtained after neutralization of aqueous filtrate by filtration.
Zobrazit více v PubMed
Jin X., Peldszus S., Huck P.M. Reaction kinetics of selected micropollutants in ozonation and advanced oxidation processes. Water Res. 2012;46:6519–6530. doi: 10.1016/j.watres.2012.09.026. PubMed DOI
Larsson D.G.J., Pedro C., Paxeus N. Effluent from drug manufactures contains extremely high levels of pharmaceuticals. J. Hazard. Mater. 2007;148:751–755. doi: 10.1016/j.jhazmat.2007.07.008. PubMed DOI
Barbosa M.O., Moreira N.F.F., Ribeiro A.R., Pereira M.F.R., Silva A.M.T. Occurrence and removal of organic micropollutants: An overview of the watch list of EU Decision 2015/495. Water Res. 2016;94:257–279. doi: 10.1016/j.watres.2016.02.047. PubMed DOI
Nieto-Sandoval J., Munoz M., de Pedro Z.M., Casas J.A. Fast degradation of diclofenac by catalytic hydrodechlorination. Chemosphere. 2018;213:141–148. doi: 10.1016/j.chemosphere.2018.09.024. PubMed DOI
Schwaiger J., Ferling H., Mallow U., Wintermayer H., Negele R.D. Toxic effects of the non-steroidal anti-inflammatory drug diclofenac Part 1: Histopathological alterations and bioaccumulation in rainbow trout. Aquat. Toxicol. 2004;68:141–150. doi: 10.1016/j.aquatox.2004.03.014. PubMed DOI
Triebskorn R., Casper H., Heyd A., Eikemper R., Kohler H.R., Schwaiger J. Toxic effects of the non-steroidal anti-inflammatory drug diclofenac Part II. Cytological effects in liver, kidney, gills and intestine of rainbow trout (Oncorhynchus mykiss) Aquat. Toxicol. 2004;68:151–166. doi: 10.1016/j.aquatox.2004.03.015. PubMed DOI
Schröder P., Helmreich B., Škrbić B., Carballa M., Papa M., Pastore C., Emre Z., Oehmen A., Langenhoff A., Molinos M., et al. Status of hormones and painkillers in wastewater effluents across several European states-considerations for the EU watch list concerning estradiols and diclofenac. Environ. Sci. Pollut. Res. 2016;23:12835–12866. doi: 10.1007/s11356-016-6503-x. PubMed DOI PMC
Manasfi R., Brienza M., Ait-Mouheb N., Montemurro N., Perez S., Chiron S. Impact of long-term irrigation with municipal reclaimed wastewater on the uptake and degradation of organic contaminants in lettuce and leek. Sci. Total Environ. 2021;765:142742. doi: 10.1016/j.scitotenv.2020.142742. PubMed DOI
Puga A., Pazos M., Rosales E., Angeles Sanroman M. Electro-reversible adsorption as a versatile tool for the removal of diclofenac from wastewater. Chemosphere. 2021;280:130778. doi: 10.1016/j.chemosphere.2021.130778. PubMed DOI
Joo S.H., Tansel B. Novel technologies for reverse osmosis concentrate treatment: A review. J. Environ. Manag. 2015;150:322–335. doi: 10.1016/j.jenvman.2014.10.027. PubMed DOI
Beier S., Köster S., Veltmann K., Schröder H., Pinnekamp J. Treatment of hospital wastewater effluent by nanofiltration and reverse osmosis. Water Sci. Technol. 2010;61:1691–1698. doi: 10.2166/wst.2010.119. PubMed DOI
Sgroi M., Snyder S.A., Roccaro P. Comparison of AOPs at pilot scale: Energy costs for micro-pollutants oxidation, disinfection by-products formation and pathogens inactivation. Chemosphere. 2021;273:128527. doi: 10.1016/j.chemosphere.2020.128527. PubMed DOI
Rosales E., Diaz S., Pazos M., Angeles Sanroman M. Comprehensive strategy for the degradation of anti-inflammatory drug diclofenac by different advanced oxidation processes. Sep. Pur. Technol. 2019;208:130–141. doi: 10.1016/j.seppur.2018.04.014. DOI
Wang S., Zhang W., Jia F., Fu H., Liu T., Zhang X., Liu B., Nunez-Delgado A., Han N. Novel Ag3PO4/boron-carbon-nitrogen photocatalyst for highly efficient degradation of organic pollutants under visible-light irradiation. J. Environ. Manag. 2021;292:112763. doi: 10.1016/j.jenvman.2021.112763. PubMed DOI
Tominaga F.K., dos Santos Batista A.P., Costa Teixeira A.C.S., Borrely S.I. Degradation of diclofenac by electron beam irradiaton: Toxicity removal, by-products identification and effect of another pharmaceutical compound. J. Environ. Chem. Eng. 2018;6:4605–4611. doi: 10.1016/j.jece.2018.06.065. DOI
Kowalska K., Roccamante M., Cabrera Reina A., Plaza-Bolanos P., Oller I., Malato S. Pilot-scale removal of microcontaminants by solar-driven photo-Fenton in treated municipal effluents: Selection of operating variables based on lab-scale experiments. J. Environ. Chem. Eng. 2021;9:104788. doi: 10.1016/j.jece.2020.104788. DOI
Oliveros A.N., Pimentel J.A.I., de Luna M.D.G., Garcia-Segura S., Abarca R.R.M., Doong R.-A. Visible-light photocatalytic diclofenac removal by tunable vanadium pentoxide/boron-doped graphitic carbon nitride composite. Chem. Eng. J. 2021;403:126213. doi: 10.1016/j.cej.2020.126213. DOI
Gerbaldo M.V., Marchetti S.G., Elías V.R., Mendieta S.N., Crivello M.E. Degradation of anti-inflammatory drug diclofenacusing cobalt ferrite as photocatalyst. Chem. Eng. Res. Design. 2021;166:237–247. doi: 10.1016/j.cherd.2020.12.009. DOI
Costa E.P., Roccamante M., Plaza-Bolaños P., Oller I., Agüera A., Amorim C.C., Malato S. Aluminized surface to improve solar light absorption in open reactors: Application for micropollutants removal in effluents from municipal wastewater treatment plants. Sci. Total Environ. 2021;755:142624. doi: 10.1016/j.scitotenv.2020.142624. PubMed DOI
Ofrydopoulou A., Evgenidou E., Nannou C., Vasquez M.I., Lambropoulou D. Exploring the phototransformation and assessing the in vitro and in silico toxicity of a mixture of pharmaceuticals susceptible to photolysis. Sci. Total Environ. 2021;756:144079. doi: 10.1016/j.scitotenv.2020.144079. PubMed DOI
Calza P., Sakkas V.A., Medana C., Baiocchi C., Dimou A., Pelizzetti E., Albanis T. Photocatalytic degradation study of diclofenac over aqueous TiO2 suspensions. Appl. Catal. B Environ. 2006;67:197–205. doi: 10.1016/j.apcatb.2006.04.021. DOI
Perisic D.J., Kovacic M., Kusic H., Stangar U.L., Marin V., Bozic A.L. Comparative analysis of UV-C/H2O2 and UV-A/TiO2 processes for the degradation of diclofenac in water. React. Kinet. Mech. Catal. 2016;118:451–462. doi: 10.1007/s11144-016-1027-4. DOI
Heck K.N., Garcia-Segura S., Westerhoff P., Wong M.S. Catalytic Converters for Water Treatment. Acc. Chem. Res. 2019;52:906–915. doi: 10.1021/acs.accounts.8b00642. PubMed DOI
Weidlich T., Prokes L., Pospisilova D. Debromination of 2,4,6-tribromophenol coupled with biodegradation. Cent. Eur. J. Chem. 2013;11:979–987. doi: 10.2478/s11532-013-0231-6. DOI
Nieto-Sandoval J., Ortiz D., Munoz M., de Pedro Z.M., Casas J.A. On the deactivation and regeneration of Pd/Al2O3 catalyst for aqueousphase hydrodechlorination of diluted chlorpromazine solution. Catal. Today. 2020;356:255–259. doi: 10.1016/j.cattod.2019.06.028. DOI
Florea A.M., Büsselberg D. Occurrence, use and potential toxic effects of metals and metal compounds. Biometals. 2006;19:419–427. doi: 10.1007/s10534-005-4451-x. PubMed DOI
Zimmermann S., Wolff C., Sures B. Toxicity of platinum, palladium and rhodium to Daphnia magna in single and binary metal exposure experiments. Environ. Pollut. 2017;224:368–376. doi: 10.1016/j.envpol.2017.02.016. PubMed DOI
Pawlak J., Łodyga-Chruścińska E., Chrustowicz J. Fate of platinum metals in the environment. J. Trace Elem. Med. Biol. 2014;28:247–254. doi: 10.1016/j.jtemb.2014.03.005. PubMed DOI
Wu K., Qian X., Chen L., Xu Z., Zheng S., Zhu D. Effective liquid phase hydrodechlorination of diclofenac catalysed by Pd/CeO2. RSC Adv. 2015;5:18702–18709. doi: 10.1039/C4RA16674D. DOI
Yang B., Zhang F., Deng S., Yu G., Zhang H., Xiao J., Shi L., Shen J. A facile method for the highly efficient hydrodechlorination of 2-chlorophenol using Al-Ni alloy in the presence of fluorine ion. Chem. Eng. J. 2012;209:79–85. doi: 10.1016/j.cej.2012.07.083. DOI
Weidlich T., Kamenicka B., Melanova K., Cicmancova V., Komersova A., Cermak J. Hydrodechlorination of Different Chloroaromatic Compounds at Room Temperature and Ambient Pressure-Differences in Reactivity of Cu- and Ni-Based Al Alloys in an Alkaline Aqueous Solution. Catalysts. 2020;10:994. doi: 10.3390/catal10090994. DOI
Perko J., Kamenicka B., Weidlich T. Degradation of the antibacterial agents triclosan and chlorophene using hydrodechlorination by Al-based alloys. Monatsh. Chem. 2018;149:1777–1786. doi: 10.1007/s00706-018-2230-y. DOI
Weidlich T., Krejcova A., Prokes L. Hydrodebromination of 2,4,6-tribromophenol in aqueous solution using Devarda’s alloy. Monatsh. Chem. 2013;144:155–162. doi: 10.1007/s00706-012-0870-x. DOI
Pennazio S. Metals Essentials for Plants: The Nickel Case. Theor. Biol. Forum. 2012;105:83–98. PubMed
Brown P.H., Welch R.M., Cary E.E. Nickel: A micronutrient essential for higher plants. Plant Physiol. 1987;85:801–803. doi: 10.1104/pp.85.3.801. PubMed DOI PMC
Water Quality—Determination of Adsorbable Organically Bound Halogens (AOX) European Committee for Standardization; Brussels, Belgium: 2004. [(accessed on 28 December 2021)]. ISO Org. Data, 2004. Available online: https://www.iso.org/standard/36918.html.
Weidlich T., Oprsal J., Krejcova A., Jasurek B. Effect of glucose on lowering Al-Ni alloy consumption in dehalogenation of halogenoanilines. Monatsh. Chem. 2015;146:613–620. doi: 10.1007/s00706-014-1344-0. DOI
Bendova H., Weidlich T. Application of diffusion dialysis in hydrometallurgical separation of nickel from spent Raney Ni catalyst. Sep. Sci. Technol. 2018;53:1218–1222. doi: 10.1080/01496395.2017.1329839. DOI
Gawel A., Seiwert B., Suhnholz S., Schmitt-Jansen M., Mackenzie K. In-situ treatment of herbicide-contaminated groundwater–Feasibility study for the cases atrazine and bromacil using two novel nanoremediation-type materials. J. Hazard. Mater. 2020;393:122470. doi: 10.1016/j.jhazmat.2020.122470. PubMed DOI
Leonard D.K., Ryabchuk P., Anwar M., Dastgir S., Junge K., Matthias B. A Convenient and Stable Heterogeneous Nickel Catalyst for Hydrodehalogenation of Aryl Halides Using Molecular Hydrogen. ChemSusChem. 2022;15:202102315. doi: 10.1002/cssc.202102315. PubMed DOI
Mu Y., Chen Y., Fu Q., He P.-Y., Sun Q., Zou J.-P., Zhang L., Wang D., Luo S. Transformation of Atrazine to Hydroxyatrazine with Alkali-H2O2 Treatment: An Efficient Dechlorination Strategy under Alkaline Conditions. ACS EST Water. 2021;1:1868–1877. doi: 10.1021/acsestwater.1c00127. DOI
Golovko O., Kumar V., Fedorova G., Randak T., Grabic R. Seasonal changes in antibiotics, antidepressants/psychiatric drugs, antihistamines and lipid regulators in a wastewater treatment plant. Chemosphere. 2014;111:418–426. doi: 10.1016/j.chemosphere.2014.03.132. PubMed DOI
Liu A., Lin W., Ping S., Guan W., Hu N., Zheng S., Ren Y. Analysis of degradation and pathways of three common antihistamine drugs by NaClO, UV, and UV-NaClO methods. Environ. Sci. Poll. Res. 2022 doi: 10.1007/s11356-022-18760-8. PubMed DOI
Gadipelly C.R., Rathod V.K., Marathe K.V. Persulfate assisted photo-catalytic abatement of cetirizine hydrochloride from aqueous waste: Biodegradability and toxicity analysis. J. Mol. Catal. A Chem. 2016;414:116–121. doi: 10.1016/j.molcata.2015.12.021. DOI
Volcao L.M., Fraga L.S., de Lima Brum R., de Moura R.R., Bernardi E., Ramos D.F., da Silva F.M.R., Jr. Toxicity of Biocide Formulations in the Soil to the Gut Community in Balloniscus selowii Brandt, 1983 (Crustacea: Isopoda: Oniscidea) Water Air Soil Pollut. 2020;231:306–314. doi: 10.1007/s11270-020-04689-6. DOI
Keerthisinghe T.P., Nguyen L.N., Kwon E.E., Oh S. Antiseptic chlorhexidine in activated sludge: Biosorption, antimicrobial susceptibility, and alteration of community structure. J. Environ. Manag. 2019;237:629–635. doi: 10.1016/j.jenvman.2019.02.043. PubMed DOI
Sarkar S., Bhattacharjee C. Removal of micro-pollutant using an indigenous photo membrane reactor. J. Environ. Chem. Eng. 2020;8:103673. doi: 10.1016/j.jece.2020.103673. DOI
Schröder S., San-Román M.-F., Ortiz I. Dioxins and furans toxicity during the photocatalytic remediation of emerging pollutants. Triclosan as case study. Sci. Total Environ. 2021;770:144853. doi: 10.1016/j.scitotenv.2020.144853. PubMed DOI
Pacholak A., Burlaga N., Frankowski R., Zgoła-Grześkowiak A., Kaczorek E. Azole fungicides: (Bio)degradation, transformation products and toxicity elucidation. Sci. Total Environ. 2022;802:149917. doi: 10.1016/j.scitotenv.2021.149917. PubMed DOI
Da Silva W.L., Lansarin M.A., Livotto P.R., dos Santos J.H.Z. Photocatalytic degradation of drugs by supported titania-based catalysts produced from petrochemical plant residue. Powder Technol. 2015;279:166–172. doi: 10.1016/j.powtec.2015.03.045. DOI
Diaz-Sosa V.R., Tapia-Salazar M., Wanner J., Cardenas-Chavez D.L. Monitoring and Ecotoxicity Assessment of Emerging Contaminants in Wastewater Discharge in the City of Prague (Czech Republic) Water. 2020;12:1079. doi: 10.3390/w12041079. DOI
Mussa Z.H., Al-Qaim F.F., Yuzir A., Hara H., Azman S., Chelliapan S. Elucidation and Characterization of New Chlorinated By-Products after Electrochemical Degradation of Hydrochlorothiazide Using Graphite–Poly Vinyl Chloride Electrode. Catalysts. 2018;8:540. doi: 10.3390/catal8110540. DOI
Hegedus M., Lacina P., Ploteny M., Lev J., Kamenicka B., Weidlich T. Fast and efficient hydrodehalogenation of chlorinated benzenes in real wastewaters using Raney alloy. J. Water Proc. Eng. 2020;38:101645. doi: 10.1016/j.jwpe.2020.101645. DOI
Moser P., Sallmann A., Wiesenberg I. Synthesis and quantitative structure-activity relationships of diclofenac analogs. J. Med. Chem. 1990;33:2358–2368. doi: 10.1021/jm00171a008. PubMed DOI
Jalal A., Shahzadi S., Shahid K., Ali S., Badshah A., Mazhar M., Khan K.M. Preparation, spectroscopic studies and biological activity of mono-organotin (IV) derivatives of non-steroidal anti-inflammatory drugs. Turk. J. Chem. 2004;28:629–644.
Kourkoumelis N., Demertzis M.A., Kovala-Demertzi D., Koutsodimou A., Moukarika A. Preparations and spectroscopic studies of organotin complexes of diclofenac. Spectrochim. Acta A. 2004;60:2253–2259. doi: 10.1016/j.saa.2003.11.027. PubMed DOI
Shindikar A.V., Khan F., Viswanathan C.L. Design, synthesis and in vivo anticonvulsant screening in mice of novel phenylacetamides. Eur. J. Med. Chem. 2006;41:786–792. doi: 10.1016/j.ejmech.2006.03.013. PubMed DOI
Japanese National Institute of Advanced Industrial Science and Technology. [(accessed on 20 December 2021)]; Available online: https://sdbs.db.aist.go.jp.
Monguchi Y., Kume A., Hattori K., Maegawa T., Sajiki H. Pd/C–Et3N-mediated catalytic hydrodechlorination of aromatic chlorides under mild conditions. Tetrahedron. 2006;62:7926–7933. doi: 10.1016/j.tet.2006.05.025. DOI
EVA . Diffracplus Basic Evaluating Package, Version 19. Bruker AXS GmbH; Billerica, MA, USA: 2013.
ICDD . Joint Committee on Powder Diffraction Standards, International Centre of Diffraction Data. ICDD; Swarthmore, PA, USA: 1995.