Application of Raney Al-Ni Alloy for Simple Hydrodehalogenation of Diclofenac and Other Halogenated Biocidal Contaminants in Alkaline Aqueous Solution under Ambient Conditions

. 2022 May 31 ; 15 (11) : . [epub] 20220531

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35683235

Raney Al-Ni contains 62% of Ni2Al3 and 38% NiAl3 crystalline phases. Its applicability has been studied within an effective hydrodehalogenation of hardly biodegradable anti-inflammatory drug diclofenac in model aqueous concentrates and, subsequently, even in real hospital wastewater with the aim of transforming them into easily biodegradable products. In model aqueous solution, complete hydrodechlorination of 2 mM aqueous diclofenac solution (0.59 g L-1) yielding the 2-anilinophenylacetate was achieved in less than 50 min at room temperature and ambient pressure using only 9.7 g L-1 of KOH and 1.65 g L-1 of Raney Al-Ni alloy. The dissolving of Al during the hydrodehalogenation process is accompanied by complete consumption of NiAl3 crystalline phase and partial depletion of Ni2Al3. A comparison of the hydrodehalogenation ability of a mixture of diclofenac and other widely used halogenated aromatic or heterocyclic biocides in model aqueous solution using Al-Ni was performed to verify the high hydrodehalogenation activity for each of the used halogenated contaminants. Remarkably, the robustness of Al-Ni-based hydrodehalogenation was demonstrated even for the removal of non-biodegradable diclofenac in real hospital wastewater with high chloride and nitrate content. After removal of the insoluble part of the Al-Ni for subsequent hydrometallurgical recycling, the low quantity of residual Ni was removed together with insoluble Al(OH)3 obtained after neutralization of aqueous filtrate by filtration.

Zobrazit více v PubMed

Jin X., Peldszus S., Huck P.M. Reaction kinetics of selected micropollutants in ozonation and advanced oxidation processes. Water Res. 2012;46:6519–6530. doi: 10.1016/j.watres.2012.09.026. PubMed DOI

Larsson D.G.J., Pedro C., Paxeus N. Effluent from drug manufactures contains extremely high levels of pharmaceuticals. J. Hazard. Mater. 2007;148:751–755. doi: 10.1016/j.jhazmat.2007.07.008. PubMed DOI

Barbosa M.O., Moreira N.F.F., Ribeiro A.R., Pereira M.F.R., Silva A.M.T. Occurrence and removal of organic micropollutants: An overview of the watch list of EU Decision 2015/495. Water Res. 2016;94:257–279. doi: 10.1016/j.watres.2016.02.047. PubMed DOI

Nieto-Sandoval J., Munoz M., de Pedro Z.M., Casas J.A. Fast degradation of diclofenac by catalytic hydrodechlorination. Chemosphere. 2018;213:141–148. doi: 10.1016/j.chemosphere.2018.09.024. PubMed DOI

Schwaiger J., Ferling H., Mallow U., Wintermayer H., Negele R.D. Toxic effects of the non-steroidal anti-inflammatory drug diclofenac Part 1: Histopathological alterations and bioaccumulation in rainbow trout. Aquat. Toxicol. 2004;68:141–150. doi: 10.1016/j.aquatox.2004.03.014. PubMed DOI

Triebskorn R., Casper H., Heyd A., Eikemper R., Kohler H.R., Schwaiger J. Toxic effects of the non-steroidal anti-inflammatory drug diclofenac Part II. Cytological effects in liver, kidney, gills and intestine of rainbow trout (Oncorhynchus mykiss) Aquat. Toxicol. 2004;68:151–166. doi: 10.1016/j.aquatox.2004.03.015. PubMed DOI

Schröder P., Helmreich B., Škrbić B., Carballa M., Papa M., Pastore C., Emre Z., Oehmen A., Langenhoff A., Molinos M., et al. Status of hormones and painkillers in wastewater effluents across several European states-considerations for the EU watch list concerning estradiols and diclofenac. Environ. Sci. Pollut. Res. 2016;23:12835–12866. doi: 10.1007/s11356-016-6503-x. PubMed DOI PMC

Manasfi R., Brienza M., Ait-Mouheb N., Montemurro N., Perez S., Chiron S. Impact of long-term irrigation with municipal reclaimed wastewater on the uptake and degradation of organic contaminants in lettuce and leek. Sci. Total Environ. 2021;765:142742. doi: 10.1016/j.scitotenv.2020.142742. PubMed DOI

Puga A., Pazos M., Rosales E., Angeles Sanroman M. Electro-reversible adsorption as a versatile tool for the removal of diclofenac from wastewater. Chemosphere. 2021;280:130778. doi: 10.1016/j.chemosphere.2021.130778. PubMed DOI

Joo S.H., Tansel B. Novel technologies for reverse osmosis concentrate treatment: A review. J. Environ. Manag. 2015;150:322–335. doi: 10.1016/j.jenvman.2014.10.027. PubMed DOI

Beier S., Köster S., Veltmann K., Schröder H., Pinnekamp J. Treatment of hospital wastewater effluent by nanofiltration and reverse osmosis. Water Sci. Technol. 2010;61:1691–1698. doi: 10.2166/wst.2010.119. PubMed DOI

Sgroi M., Snyder S.A., Roccaro P. Comparison of AOPs at pilot scale: Energy costs for micro-pollutants oxidation, disinfection by-products formation and pathogens inactivation. Chemosphere. 2021;273:128527. doi: 10.1016/j.chemosphere.2020.128527. PubMed DOI

Rosales E., Diaz S., Pazos M., Angeles Sanroman M. Comprehensive strategy for the degradation of anti-inflammatory drug diclofenac by different advanced oxidation processes. Sep. Pur. Technol. 2019;208:130–141. doi: 10.1016/j.seppur.2018.04.014. DOI

Wang S., Zhang W., Jia F., Fu H., Liu T., Zhang X., Liu B., Nunez-Delgado A., Han N. Novel Ag3PO4/boron-carbon-nitrogen photocatalyst for highly efficient degradation of organic pollutants under visible-light irradiation. J. Environ. Manag. 2021;292:112763. doi: 10.1016/j.jenvman.2021.112763. PubMed DOI

Tominaga F.K., dos Santos Batista A.P., Costa Teixeira A.C.S., Borrely S.I. Degradation of diclofenac by electron beam irradiaton: Toxicity removal, by-products identification and effect of another pharmaceutical compound. J. Environ. Chem. Eng. 2018;6:4605–4611. doi: 10.1016/j.jece.2018.06.065. DOI

Kowalska K., Roccamante M., Cabrera Reina A., Plaza-Bolanos P., Oller I., Malato S. Pilot-scale removal of microcontaminants by solar-driven photo-Fenton in treated municipal effluents: Selection of operating variables based on lab-scale experiments. J. Environ. Chem. Eng. 2021;9:104788. doi: 10.1016/j.jece.2020.104788. DOI

Oliveros A.N., Pimentel J.A.I., de Luna M.D.G., Garcia-Segura S., Abarca R.R.M., Doong R.-A. Visible-light photocatalytic diclofenac removal by tunable vanadium pentoxide/boron-doped graphitic carbon nitride composite. Chem. Eng. J. 2021;403:126213. doi: 10.1016/j.cej.2020.126213. DOI

Gerbaldo M.V., Marchetti S.G., Elías V.R., Mendieta S.N., Crivello M.E. Degradation of anti-inflammatory drug diclofenacusing cobalt ferrite as photocatalyst. Chem. Eng. Res. Design. 2021;166:237–247. doi: 10.1016/j.cherd.2020.12.009. DOI

Costa E.P., Roccamante M., Plaza-Bolaños P., Oller I., Agüera A., Amorim C.C., Malato S. Aluminized surface to improve solar light absorption in open reactors: Application for micropollutants removal in effluents from municipal wastewater treatment plants. Sci. Total Environ. 2021;755:142624. doi: 10.1016/j.scitotenv.2020.142624. PubMed DOI

Ofrydopoulou A., Evgenidou E., Nannou C., Vasquez M.I., Lambropoulou D. Exploring the phototransformation and assessing the in vitro and in silico toxicity of a mixture of pharmaceuticals susceptible to photolysis. Sci. Total Environ. 2021;756:144079. doi: 10.1016/j.scitotenv.2020.144079. PubMed DOI

Calza P., Sakkas V.A., Medana C., Baiocchi C., Dimou A., Pelizzetti E., Albanis T. Photocatalytic degradation study of diclofenac over aqueous TiO2 suspensions. Appl. Catal. B Environ. 2006;67:197–205. doi: 10.1016/j.apcatb.2006.04.021. DOI

Perisic D.J., Kovacic M., Kusic H., Stangar U.L., Marin V., Bozic A.L. Comparative analysis of UV-C/H2O2 and UV-A/TiO2 processes for the degradation of diclofenac in water. React. Kinet. Mech. Catal. 2016;118:451–462. doi: 10.1007/s11144-016-1027-4. DOI

Heck K.N., Garcia-Segura S., Westerhoff P., Wong M.S. Catalytic Converters for Water Treatment. Acc. Chem. Res. 2019;52:906–915. doi: 10.1021/acs.accounts.8b00642. PubMed DOI

Weidlich T., Prokes L., Pospisilova D. Debromination of 2,4,6-tribromophenol coupled with biodegradation. Cent. Eur. J. Chem. 2013;11:979–987. doi: 10.2478/s11532-013-0231-6. DOI

Nieto-Sandoval J., Ortiz D., Munoz M., de Pedro Z.M., Casas J.A. On the deactivation and regeneration of Pd/Al2O3 catalyst for aqueousphase hydrodechlorination of diluted chlorpromazine solution. Catal. Today. 2020;356:255–259. doi: 10.1016/j.cattod.2019.06.028. DOI

Florea A.M., Büsselberg D. Occurrence, use and potential toxic effects of metals and metal compounds. Biometals. 2006;19:419–427. doi: 10.1007/s10534-005-4451-x. PubMed DOI

Zimmermann S., Wolff C., Sures B. Toxicity of platinum, palladium and rhodium to Daphnia magna in single and binary metal exposure experiments. Environ. Pollut. 2017;224:368–376. doi: 10.1016/j.envpol.2017.02.016. PubMed DOI

Pawlak J., Łodyga-Chruścińska E., Chrustowicz J. Fate of platinum metals in the environment. J. Trace Elem. Med. Biol. 2014;28:247–254. doi: 10.1016/j.jtemb.2014.03.005. PubMed DOI

Wu K., Qian X., Chen L., Xu Z., Zheng S., Zhu D. Effective liquid phase hydrodechlorination of diclofenac catalysed by Pd/CeO2. RSC Adv. 2015;5:18702–18709. doi: 10.1039/C4RA16674D. DOI

Yang B., Zhang F., Deng S., Yu G., Zhang H., Xiao J., Shi L., Shen J. A facile method for the highly efficient hydrodechlorination of 2-chlorophenol using Al-Ni alloy in the presence of fluorine ion. Chem. Eng. J. 2012;209:79–85. doi: 10.1016/j.cej.2012.07.083. DOI

Weidlich T., Kamenicka B., Melanova K., Cicmancova V., Komersova A., Cermak J. Hydrodechlorination of Different Chloroaromatic Compounds at Room Temperature and Ambient Pressure-Differences in Reactivity of Cu- and Ni-Based Al Alloys in an Alkaline Aqueous Solution. Catalysts. 2020;10:994. doi: 10.3390/catal10090994. DOI

Perko J., Kamenicka B., Weidlich T. Degradation of the antibacterial agents triclosan and chlorophene using hydrodechlorination by Al-based alloys. Monatsh. Chem. 2018;149:1777–1786. doi: 10.1007/s00706-018-2230-y. DOI

Weidlich T., Krejcova A., Prokes L. Hydrodebromination of 2,4,6-tribromophenol in aqueous solution using Devarda’s alloy. Monatsh. Chem. 2013;144:155–162. doi: 10.1007/s00706-012-0870-x. DOI

Pennazio S. Metals Essentials for Plants: The Nickel Case. Theor. Biol. Forum. 2012;105:83–98. PubMed

Brown P.H., Welch R.M., Cary E.E. Nickel: A micronutrient essential for higher plants. Plant Physiol. 1987;85:801–803. doi: 10.1104/pp.85.3.801. PubMed DOI PMC

Water Quality—Determination of Adsorbable Organically Bound Halogens (AOX) European Committee for Standardization; Brussels, Belgium: 2004. [(accessed on 28 December 2021)]. ISO Org. Data, 2004. Available online: https://www.iso.org/standard/36918.html.

Weidlich T., Oprsal J., Krejcova A., Jasurek B. Effect of glucose on lowering Al-Ni alloy consumption in dehalogenation of halogenoanilines. Monatsh. Chem. 2015;146:613–620. doi: 10.1007/s00706-014-1344-0. DOI

Bendova H., Weidlich T. Application of diffusion dialysis in hydrometallurgical separation of nickel from spent Raney Ni catalyst. Sep. Sci. Technol. 2018;53:1218–1222. doi: 10.1080/01496395.2017.1329839. DOI

Gawel A., Seiwert B., Suhnholz S., Schmitt-Jansen M., Mackenzie K. In-situ treatment of herbicide-contaminated groundwater–Feasibility study for the cases atrazine and bromacil using two novel nanoremediation-type materials. J. Hazard. Mater. 2020;393:122470. doi: 10.1016/j.jhazmat.2020.122470. PubMed DOI

Leonard D.K., Ryabchuk P., Anwar M., Dastgir S., Junge K., Matthias B. A Convenient and Stable Heterogeneous Nickel Catalyst for Hydrodehalogenation of Aryl Halides Using Molecular Hydrogen. ChemSusChem. 2022;15:202102315. doi: 10.1002/cssc.202102315. PubMed DOI

Mu Y., Chen Y., Fu Q., He P.-Y., Sun Q., Zou J.-P., Zhang L., Wang D., Luo S. Transformation of Atrazine to Hydroxyatrazine with Alkali-H2O2 Treatment: An Efficient Dechlorination Strategy under Alkaline Conditions. ACS EST Water. 2021;1:1868–1877. doi: 10.1021/acsestwater.1c00127. DOI

Golovko O., Kumar V., Fedorova G., Randak T., Grabic R. Seasonal changes in antibiotics, antidepressants/psychiatric drugs, antihistamines and lipid regulators in a wastewater treatment plant. Chemosphere. 2014;111:418–426. doi: 10.1016/j.chemosphere.2014.03.132. PubMed DOI

Liu A., Lin W., Ping S., Guan W., Hu N., Zheng S., Ren Y. Analysis of degradation and pathways of three common antihistamine drugs by NaClO, UV, and UV-NaClO methods. Environ. Sci. Poll. Res. 2022 doi: 10.1007/s11356-022-18760-8. PubMed DOI

Gadipelly C.R., Rathod V.K., Marathe K.V. Persulfate assisted photo-catalytic abatement of cetirizine hydrochloride from aqueous waste: Biodegradability and toxicity analysis. J. Mol. Catal. A Chem. 2016;414:116–121. doi: 10.1016/j.molcata.2015.12.021. DOI

Volcao L.M., Fraga L.S., de Lima Brum R., de Moura R.R., Bernardi E., Ramos D.F., da Silva F.M.R., Jr. Toxicity of Biocide Formulations in the Soil to the Gut Community in Balloniscus selowii Brandt, 1983 (Crustacea: Isopoda: Oniscidea) Water Air Soil Pollut. 2020;231:306–314. doi: 10.1007/s11270-020-04689-6. DOI

Keerthisinghe T.P., Nguyen L.N., Kwon E.E., Oh S. Antiseptic chlorhexidine in activated sludge: Biosorption, antimicrobial susceptibility, and alteration of community structure. J. Environ. Manag. 2019;237:629–635. doi: 10.1016/j.jenvman.2019.02.043. PubMed DOI

Sarkar S., Bhattacharjee C. Removal of micro-pollutant using an indigenous photo membrane reactor. J. Environ. Chem. Eng. 2020;8:103673. doi: 10.1016/j.jece.2020.103673. DOI

Schröder S., San-Román M.-F., Ortiz I. Dioxins and furans toxicity during the photocatalytic remediation of emerging pollutants. Triclosan as case study. Sci. Total Environ. 2021;770:144853. doi: 10.1016/j.scitotenv.2020.144853. PubMed DOI

Pacholak A., Burlaga N., Frankowski R., Zgoła-Grześkowiak A., Kaczorek E. Azole fungicides: (Bio)degradation, transformation products and toxicity elucidation. Sci. Total Environ. 2022;802:149917. doi: 10.1016/j.scitotenv.2021.149917. PubMed DOI

Da Silva W.L., Lansarin M.A., Livotto P.R., dos Santos J.H.Z. Photocatalytic degradation of drugs by supported titania-based catalysts produced from petrochemical plant residue. Powder Technol. 2015;279:166–172. doi: 10.1016/j.powtec.2015.03.045. DOI

Diaz-Sosa V.R., Tapia-Salazar M., Wanner J., Cardenas-Chavez D.L. Monitoring and Ecotoxicity Assessment of Emerging Contaminants in Wastewater Discharge in the City of Prague (Czech Republic) Water. 2020;12:1079. doi: 10.3390/w12041079. DOI

Mussa Z.H., Al-Qaim F.F., Yuzir A., Hara H., Azman S., Chelliapan S. Elucidation and Characterization of New Chlorinated By-Products after Electrochemical Degradation of Hydrochlorothiazide Using Graphite–Poly Vinyl Chloride Electrode. Catalysts. 2018;8:540. doi: 10.3390/catal8110540. DOI

Hegedus M., Lacina P., Ploteny M., Lev J., Kamenicka B., Weidlich T. Fast and efficient hydrodehalogenation of chlorinated benzenes in real wastewaters using Raney alloy. J. Water Proc. Eng. 2020;38:101645. doi: 10.1016/j.jwpe.2020.101645. DOI

Moser P., Sallmann A., Wiesenberg I. Synthesis and quantitative structure-activity relationships of diclofenac analogs. J. Med. Chem. 1990;33:2358–2368. doi: 10.1021/jm00171a008. PubMed DOI

Jalal A., Shahzadi S., Shahid K., Ali S., Badshah A., Mazhar M., Khan K.M. Preparation, spectroscopic studies and biological activity of mono-organotin (IV) derivatives of non-steroidal anti-inflammatory drugs. Turk. J. Chem. 2004;28:629–644.

Kourkoumelis N., Demertzis M.A., Kovala-Demertzi D., Koutsodimou A., Moukarika A. Preparations and spectroscopic studies of organotin complexes of diclofenac. Spectrochim. Acta A. 2004;60:2253–2259. doi: 10.1016/j.saa.2003.11.027. PubMed DOI

Shindikar A.V., Khan F., Viswanathan C.L. Design, synthesis and in vivo anticonvulsant screening in mice of novel phenylacetamides. Eur. J. Med. Chem. 2006;41:786–792. doi: 10.1016/j.ejmech.2006.03.013. PubMed DOI

Japanese National Institute of Advanced Industrial Science and Technology. [(accessed on 20 December 2021)]; Available online: https://sdbs.db.aist.go.jp.

Monguchi Y., Kume A., Hattori K., Maegawa T., Sajiki H. Pd/C–Et3N-mediated catalytic hydrodechlorination of aromatic chlorides under mild conditions. Tetrahedron. 2006;62:7926–7933. doi: 10.1016/j.tet.2006.05.025. DOI

EVA . Diffracplus Basic Evaluating Package, Version 19. Bruker AXS GmbH; Billerica, MA, USA: 2013.

ICDD . Joint Committee on Powder Diffraction Standards, International Centre of Diffraction Data. ICDD; Swarthmore, PA, USA: 1995.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...