Separation of Anionic Chlorinated Dyes from Polluted Aqueous Streams Using Ionic Liquids and Their Subsequent Recycling
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
37569613
PubMed Central
PMC10418802
DOI
10.3390/ijms241512235
PII: ijms241512235
Knihovny.cz E-zdroje
- Klíčová slova
- Acid Yellow 17, Mordant Blue 9, NaBH4, NiSO4, Raney Al-Ni alloy, acid azo dye, dehalogenation, hydrodechlorination, ion pairs, ionic liquids, reduction,
- MeSH
- aminy MeSH
- azosloučeniny chemie MeSH
- barvicí látky * MeSH
- iontové kapaliny * chemie MeSH
- odpadní voda MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- aminy MeSH
- azosloučeniny MeSH
- barvicí látky * MeSH
- iontové kapaliny * MeSH
- odpadní voda MeSH
The effect of ionic liquids on the separation of chlorinated anionic dyes such as Mordant Blue 9 (MB9) or Acid Yellow 17 (AY17) via ion exchange has been investigated in model aqueous solutions that simulate wastewater from the textile dyeing industry. The effect of ionic liquids chemical nature on the separation efficiency of mentioned dyes has been compared. It was found that especially ionic liquid based on quaternary ammonium salts comprising two or three long alkyl chains bound to the quaternary ammonium nitrogen (typically benzalkonium chloride or Aliquat 336) are very effective for the separation of both studied MB9 and AY17 from aqueous solution. In addition, the innovative technique has been developed for the reactivation of spent ionic liquids which is based on the chemical reduction of the formed ion pairs using NaBH4/NiSO4, NaBH4/Na2S2O5 or Raney Al-Ni alloy/NaOH. Thus, only NaBH4/NiSO4 in co-action with Al-Ni alloy enables both effective reduction of the azo bond and subsequent hydrodechlorination of emerging chlorinated aromatic amines. The efficiency of tested dyes separation or regeneration of ion pairs was evaluated by determination of the absorbance at wavelength of the maximum absorbance, of the Chemical Oxidation Demand (COD), and of the Adsorbables Organically bound Halogens (AOX). The formation of ion pairs or products of reduction and hydrodechlorination of these ion pairs has been studied using the 1H NMR and LC-MS techniques.
Zobrazit více v PubMed
Gao H.W., Lin J., Li W.Y., Hu Z.J., Zhang Y.L. Formation of shaped barium sulfate-dye hybrids: Waste dye utilization for eco-friendly treatment of wastewater. Environ. Sci. Pollut. Res. 2010;17:78–83. doi: 10.1007/s11356-009-0249-7. PubMed DOI
Selvaraj V., Karthika T.S., Mansiya C., Alagar M. An over review on recently developed techniques, mechanisms and intermediate involved in the advanced azo dye degradation for industrial applications. J. Mol. Struct. 2021;1224:129195. doi: 10.1016/j.molstruc.2020.129195. DOI
Gong R., Li M., Yang C., Sun Y., Chen J. Removal of cationic dyes from aqueous solution by adsorption on peanut hull. J. Hazard. Mater. 2005;121:247–250. doi: 10.1016/j.jhazmat.2005.01.029. PubMed DOI
Wang H.Y., Ma L.M., Li T., Zhang Y.L., Gao H.W. Preparation and characterization of silver thiocyanate–tetrabromo-tetrachlorofluorescein inclusion material and its adsorption to synthetic dye. Colloids Surf. A Physicochem. Eng. Asp. 2009;333:126–132. doi: 10.1016/j.colsurfa.2008.09.039. DOI
Edwards L.C., Freeman H.S. Synthetic dyes based on environmental considerations. Part 3: Aquatic toxicity of iron-complexed azo dyes. Color. Technol. 2005;121:265–270. doi: 10.1111/j.1478-4408.2005.tb00284.x. DOI
Pirkarami A., Olya M.E. Removal of dye from industrial wastewater with an emphasis on improving economic efficiency and degradation mechanism. J. Saudi Chem. Soc. 2017;21:S179–S186. doi: 10.1016/j.jscs.2013.12.008. DOI
Pervez M.N., Telegin F.Y., Cai Y., Xia D., Zarra T., Naddeo V. Efficient Degradation of Mordant Blue 9 Using the Fenton-Activated Persulfate System. Water. 2019;11:2532. doi: 10.3390/w11122532. DOI
Šimek M., Mikulášek P., Kalenda P., Weidlich T. Possibilities for removal of chlorinated dye Mordant Blue 9 from model wastewater. Chem. Pap. 2016;70:470–476. doi: 10.1515/chempap-2015-0225. DOI
Kamenická B., Weidlich T. Comparison of different reagents applicable for destroying halogenated anionic textile dye Mordant Blue 9 in polluted aqueous streams. Catalysts. 2023;13:460. doi: 10.3390/catal13030460. DOI
Shang W., Dong Z., Li M., Song X., Zhang M., Jiang C., Feiyun S. Degradation of diatrizoate in water by Fe (II)-activated persulfate oxidation. Chem. Eng. J. 2019;361:1333–1344. doi: 10.1016/j.cej.2018.12.139. DOI
Zhu J.-P., Lin Y.-L., Zhang T.-Y., Cao T.-C., Xu B., Pan Y., Zhang X.-T., Gao N.-Y. Modelling of iohexol degradation in a Fe (II)-activated persulfate system. Chem. Eng. J. 2019;367:86–93. doi: 10.1016/j.cej.2019.02.120. DOI
Weidlich T., Kamenická B., Melánová K., Čičmancová V., Komersová A., Čermák J. Hydrodechlorination of different chloroaromatic compounds at room temperature and ambient pressure—Differences in reactivity of Cu-and Ni-Based Al alloys in an alkaline aqueous solution. Catalysts. 2021;10:994. doi: 10.3390/catal10090994. DOI
Bendová H., Kamenická B., Weidlich T., Beneš L., Vlček M., Lacina P., Švec P. Application of Raney Al-Ni alloy for simple hydrodehalogenation of Diclofenac and other halogenated biocidal contaminants in alkaline aqueous solution under ambient conditions. Materials. 2022;15:3939. doi: 10.3390/ma15113939. PubMed DOI PMC
Choi J.H., Kim Y.H., Choi S.J. Reductive dechlorination and biodegradation of 2, 4, 6-trichlorophenol using sequential permeable reactive barriers: Laboratory studies. Chemosphere. 2007;67:1551–1557. doi: 10.1016/j.chemosphere.2006.12.029. PubMed DOI
Yagub M.T., Sen T.K., Afroze S., Ang H.M. Dye and its removal from aqueous solution by adsorption: A review. Adv. Colloid Interface Sci. 2014;209:172–184. doi: 10.1016/j.cis.2014.04.002. PubMed DOI
Thamaraiselvan C., Noel M. Membrane processes for dye wastewater treatment: Recent progress in fouling control. Crit. Rev. Environ. Sci. Technol. 2015;45:1007–1040. doi: 10.1080/10643389.2014.900242. DOI
Vijayaraghavan R., Vedaraman N., Surianarayanan M., Macfarlane D.R. Extraction and recovery of azo dyes into an ionic liquid. Talanta. 2006;69:1059–1062. doi: 10.1016/j.talanta.2005.12.042. PubMed DOI
Pei Y.C., Wang J.J., Xuan X.P., Fan J., Fan M. Factors affecting ionic liquids-based removal of anionic dyes from water. Environ. Sci. Technol. 2007;41:5090–5095. doi: 10.1021/es062838d. PubMed DOI
Li C., Xin B., Xu W., Zhang Q. Study on the extraction of dyes into a room-temperature ionic liquid and their mechanisms. J. Chem. Technol. Biotechnol. 2007;82:196–204. doi: 10.1002/jctb.1656. DOI
Gharehbaghi M., Shemirani F. A Novel Method for Dye Removal: Ionic Liquid-Based Dispersive Liquid–Liquid Extraction (IL-DLLE) Clean. 2012;40:290–297. doi: 10.1002/clen.201100258. DOI
Chen X., Li F., Asumana C., Yu G. Extraction of soluble dyes from aqueous solutions with quaternary ammonium-based ionic liquids. Sep. Purif. Technol. 2013;106:105–109. doi: 10.1016/j.seppur.2013.01.002. DOI
Mahajan S., Singh N., Kushwaha J.P., Rajor A. Evaluation and mechanism of cationic/anionic dyes extraction from water by ionic liquids. Chem. Eng. Commun. 2019;206:697–707. doi: 10.1080/00986445.2018.1520706. DOI
Thasneema K.K., Dipin T., Thayyil M.S., Sahu P.K., Messali M., Rosalin T., Hadda T.B. Removal of toxic heavy metals, phenolic compounds and textile dyes from industrial wastewater using phosphonium based ionic liquids. J. Mol. Liq. 2001;323:114645. doi: 10.1016/j.molliq.2020.114645. DOI
Dalari B.L.S.K., Giroletti C.L., Malaret F.J., Skoronski E., Hallett J.P., Matias W.G., Nagel-Hassemer M.E. Application of a phosphonium-based ionic liquid for reactive textile dye removal: Extraction study and toxicological evaluation. J. Environ. Manag. 2002;304:114322. doi: 10.1016/j.jenvman.2021.114322. PubMed DOI
Weidlich T., Martinková J. Dye Precipitation Process from Aqueous Solutions. Patent No. CZ20120359A. Czech Republic Patent. 2013 July 3;
Weidlich T., Kamenická B., Bartoš M., Čermák J. Process for Removing Halogenated Organic Acids from Water. Patent No. CZ2019194A3. 2018 May 9;
Yassen D.A., Scholz M. Textile dye wastewater characteristics and constituents of synthetic effluents: A critical review. Int. J. Environ. Sci. Technol. 2019;16:1193–1226. doi: 10.1007/s13762-018-2130-z. DOI
Kamenická B., Matějíček P., Weidlich T., Pohořelý M. Applications of Biochar for Environmental Safety. OpenTech; London, UK: 2020. Application of biochar for treatment of water contaminated with polar halogenated organic pollutants; pp. 241–262.
Sigma Aldrich Luviquat Mono LS Price. [(accessed on 10 January 2023)]. Available online: https://www.sigmaaldrich.com/CZ/en/product/sigma/73430.
Wojtczuk M.K., Caeiro N., Rodríguez H., Rodil E., Soto A. Recovery of the ionic liquids [C2mim][OAc] or [C2mim][SCN] by distillation from their binary mixtures with methanol or ethanol. Sep. Purif. Technol. 2020;248:117103. doi: 10.1016/j.seppur.2020.117103. DOI
Sigma Aldrich Trioctylmethylammonium Chloride Price. [(accessed on 10 January 2023)]. Available online: https://www.sigmaaldrich.com/CZ/en/product/aldrich/69485.
Reife A., Freeman H.S. Environmental Chemistry of Dyes and Pigments. 1st ed. John Wiley & Sons; Hoboken, NJ, USA: 1996. p. 352.
Sigma Aldrich 12% NaBH4 in 14M NaOH Price. [(accessed on 10 January 2023)]. Available online: https://www.sigmaaldrich.com/CZ/en/product/aldrich/452904.
Weidlich T., Kamenicka B. Recycling of Spent Hydrodehalogenation Catalysts–Problems Dealing with Separation of Aluminium. Inz. Miner. 2019;21:177–182. doi: 10.29227/IM-2019-01-34. DOI