• This record comes from PubMed

Immunosuppression Affects Neutrophil Functions: Does Calcineurin-NFAT Signaling Matter?

. 2021 ; 12 () : 770515. [epub] 20211102

Language English Country Switzerland Media electronic-ecollection

Document type Journal Article, Research Support, Non-U.S. Gov't, Review

Neutrophils are innate immune cells with important roles in antimicrobial defense. However, impaired or dysregulated neutrophil function can result in host tissue damage, loss of homeostasis, hyperinflammation or pathological immunosuppression. A central link between neutrophil activation and immune outcomes is emerging to be the calcineurin-nuclear factor of activated T cells (NFAT) signaling pathway, which is activated by neutrophil detection of a microbial threat via pattern recognition receptors and results in inflammatory cytokine production. This potent pro-inflammatory pathway is also the target of several immunosuppressive drugs used for the treatment of autoimmune disorders, during solid organ and hematopoietic cell transplantations, and as a part of anti-cancer therapy: but what effects these drugs have on neutrophil function, and their broader consequences for immune homeostasis and microbial defense are not yet known. Here, we bring together the emerging literature describing pathology- and drug- induced neutrophil impairment, with particular focus on their effects on calcineurin-NFAT signaling in the innate immune compartment.

See more in PubMed

Zhang X, Kluger Y, Nakayama Y, Poddar R, Whitney C, DeTora A, et al. . Gene Expression in Mature Neutrophils: Early Responses to Inflammatory Stimuli. J Leukoc Biol (2004) 75:358–72. doi: 10.1189/jlb.0903412 PubMed DOI

Mayadas TN, Cullere X, Lowell CA. The Multifaceted Functions of Neutrophils. Annu Rev Pathol (2014) 9:181–218. doi: 10.1146/annurev-pathol-020712-164023 PubMed DOI PMC

Burn GL, Foti A, Marsman G, Patel DF, Zychlinsky A. The Neutrophil. Immunity (2021) 54:1377–91. doi: 10.1016/j.immuni.2021.06.006 PubMed DOI

Scapini P, Lapinet-Vera JA, Gasperini S, Calzetti F, Bazzoni F, Cassatella MA. The Neutrophil as a Cellular Source of Chemokines. Immunol Rev (2000) 177:195–203. doi: 10.1034/j.1600-065x.2000.17706.x PubMed DOI

Im S-H, Rao A. Activation and Deactivation of Gene Expression by Ca2+/calcineurin-NFAT-Mediated Signaling. Mol Cells (2004) 18:1–9. PubMed

Fric J, Zelante T, Wong AYW, Mertes A, Yu H-B, Ricciardi-Castagnoli P. NFAT Control of Innate Immunity. Blood (2012) 120:1380–9. doi: 10.1182/blood-2012-02-404475 PubMed DOI

Nathan C. Neutrophils and Immunity: Challenges and Opportunities. Nat Rev Immunol (2006) 6:173–82. doi: 10.1038/nri1785 PubMed DOI

Amulic B, Cazalet C, Hayes GL, Metzler KD, Zychlinsky A. Neutrophil Function: From Mechanisms to Disease. Annu Rev Immunol (2012) 30:459–89. doi: 10.1146/annurev-immunol-020711-074942 PubMed DOI

Kovtun A, Messerer DAC, Scharffetter-Kochanek K, Huber-Lang M, Ignatius A. Neutrophils in Tissue Trauma of the Skin, Bone, and Lung: Two Sides of the Same Coin. J Immunol Res (2018) 2018. doi: 10.1155/2018/8173983 PubMed DOI PMC

Wang J. Neutrophils in Tissue Injury and Repair. Cell Tissue Res (2018) 371:531–9. doi: 10.1007/s00441-017-2785-7 PubMed DOI PMC

Peiseler M, Kubes P. More Friend Than Foe: The Emerging Role of Neutrophils in Tissue Repair. J Clin Invest (2019) 129:2629–39. doi: 10.1172/JCI124616 PubMed DOI PMC

Grommes J, Soehnlein O. Contribution of Neutrophils to Acute Lung Injury. Mol Med (2011) 17:293–307. doi: 10.2119/molmed.2010.00138 PubMed DOI PMC

Soehnlein O, Steffens S, Hidalgo A, Weber C. Neutrophils as Protagonists and Targets in Chronic Inflammation. Nat Rev Immunol (2017) 17:248–61. doi: 10.1038/nri.2017.10 PubMed DOI

Venet F, Monneret G. Advances in the Understanding and Treatment of Sepsis-Induced Immunosuppression. Nat Rev Nephrol (2018) 14:121–37. doi: 10.1038/nrneph.2017.165 PubMed DOI

Imbert S, Bresler P, Boissonnas A, Gauthier L, Souchet L, Uzunov M, et al. . Calcineurin Inhibitors Impair Neutrophil Activity Against Aspergillus Fumigatus in Allogeneic Hematopoietic Stem Cell Transplant Recipients. J Allergy Clin Immunol (2016) 138:860–8. doi: 10.1016/j.jaci.2016.02.026 PubMed DOI

Allen E, Bakke A, Purtzer M, Deodhar A. Neutrophil CD64 Expression: Distinguishing Acute Inflammatory Autoimmune Disease From Systemic Infections. Ann Rheum Dis (2002) 61:522–5. doi: 10.1136/ard.61.6.522 PubMed DOI PMC

Németh T, Sperandio M, Mócsai A. Neutrophils as Emerging Therapeutic Targets. Nat Rev Drug Discov (2020) 19:253–75. doi: 10.1038/s41573-019-0054-z PubMed DOI

Hartmann P, Herholz K, Salzberger B, Petereit HF. Unusual and Severe Symptomatic Impairment of Neutrophil Function After One Cycle of Temozolomide in Patients With Malignant Glioma. Ann Hematol (2004) 83:212–7. doi: 10.1007/s00277-003-0802-2 PubMed DOI

Erdmann F, Weiwad M. Calcineurin Inhibitors: Status Quo and Perspectives. Biomol Concepts (2011) 2:65–78. doi: 10.1515/bmc.2011.011 PubMed DOI

Azzi JR, Sayegh MH, Mallat SG. Calcineurin Inhibitors: 40 Years Later, Can’t Live Without. J Immunol (2013) 191:5785–91. doi: 10.4049/jimmunol.1390055 PubMed DOI

Deniset JF, Kubes P. Neutrophil Heterogeneity: Bona Fide Subsets or Polarization States? J Leukoc Biol (2018) 103:829–38. doi: 10.1002/JLB.3RI0917-361R PubMed DOI

Silvestre-Roig C, Fridlender ZG, Glogauer M, Scapini P. Neutrophil Diversity in Health and Disease. Trends Immunol (2019) 40:565–83. doi: 10.1016/j.it.2019.04.012 PubMed DOI PMC

Summers C, Rankin SM, Condliffe AM, Singh N, Peters AM, Chilvers ER. Neutrophil Kinetics in Health and Disease. Trends Immunol (2010) 31:318–24. doi: 10.1016/j.it.2010.05.006 PubMed DOI PMC

Casanova-Acebes M, Pitaval C, Weiss LA, Nombela-Arrieta C, Chèvre R, A-González N, et al. . Rhythmic Modulation of the Hematopoietic Niche Through Neutrophil Clearance. Cell (2013) 153:1025–35. doi: 10.1016/j.cell.2013.04.040 PubMed DOI PMC

Adrover JM, Nicolás-Ávila JA, Hidalgo A. Aging: A Temporal Dimension for Neutrophils. Trends Immunol (2016) 37:334–45. doi: 10.1016/j.it.2016.03.005 PubMed DOI

Zhang D, Chen G, Manwani D, Mortha A, Xu C, Faith JJ, et al. . Neutrophil Ageing Is Regulated by the Microbiome. Nature (2015) 525:528–32. doi: 10.1038/nature15367 PubMed DOI PMC

Tay SH, Celhar T, Fairhurst A-M. Low-Density Neutrophils in Systemic Lupus Erythematosus. Arthritis Rheumatol (2020) 72:1587–95. doi: 10.1002/art.41395 PubMed DOI PMC

Morisaki T, Goya T, Ishimitsu T, Torisu M. The Increase of Low Density Subpopulations and CD10 (CALLA) Negative Neutrophils in Severely Infected Patients. Surg Today (1992) 22:322–7. doi: 10.1007/BF00308740 PubMed DOI

La Manna MP, Orlando V, Paraboschi EM, Tamburini B, Di Carlo P, Cascio A, et al. . Mycobacterium Tuberculosis Drives Expansion of Low-Density Neutrophils Equipped With Regulatory Activities. Front Immunol (2019) 10:2761. doi: 10.3389/fimmu.2019.02761 PubMed DOI PMC

Deng Y, Ye J, Luo Q, Huang Z, Peng Y, Xiong G, et al. . Low-Density Granulocytes Are Elevated in Mycobacterial Infection and Associated With the Severity of Tuberculosis. PloS One (2016) 11:e0153567. doi: 10.1371/journal.pone.0153567 PubMed DOI PMC

Cloke T, Munder M, Taylor G, Müller I, Kropf P. Characterization of a Novel Population of Low-Density Granulocytes Associated With Disease Severity in HIV-1 Infection. PloS One (2012) 7:e48939. doi: 10.1371/journal.pone.0048939 PubMed DOI PMC

Li Y, Li H, Wang H, Pan H, Zhao H, Jin H, et al. . The Proportion, Origin and Pro-Inflammation Roles of Low Density Neutrophils in SFTS Disease. BMC Infect Dis (2019) 19:109. doi: 10.1186/s12879-019-3701-4 PubMed DOI PMC

Fu J, Tobin MC, Thomas LL. Neutrophil-Like Low-Density Granulocytes Are Elevated in Patients With Moderate to Severe Persistent Asthma. Ann Allergy Asthma Immunol (2014) 113:635–40.e2. doi: 10.1016/j.anai.2014.08.024 PubMed DOI

Sagiv JY, Michaeli J, Assi S, Mishalian I, Kisos H, Levy L, et al. . Phenotypic Diversity and Plasticity in Circulating Neutrophil Subpopulations in Cancer. Cell Rep (2015) 10:562–73. doi: 10.1016/j.celrep.2014.12.039 PubMed DOI

Mishalian I, Granot Z, Fridlender ZG. The Diversity of Circulating Neutrophils in Cancer. Immunobiology (2017) 222:82–8. doi: 10.1016/j.imbio.2016.02.001 PubMed DOI

Brandau S, Trellakis S, Bruderek K, Schmaltz D, Steller G, Elian M, et al. . Myeloid-Derived Suppressor Cells in the Peripheral Blood of Cancer Patients Contain a Subset of Immature Neutrophils With Impaired Migratory Properties. J Leukoc Biol (2011) 89:311–7. doi: 10.1189/jlb.0310162 PubMed DOI

Kumagai Y, Ohzawa H, Miyato H, Horie H, Hosoya Y, Lefor AK, et al. . Surgical Stress Increases Circulating Low-Density Neutrophils Which May Promote Tumor Recurrence. J Surg Res (2020) 246:52–61. doi: 10.1016/j.jss.2019.08.022 PubMed DOI

Hardisty GR, Llanwarne F, Minns D, Gillan JL, Davidson DJ, Gwyer Findlay E, et al. . High Purity Isolation of Low Density Neutrophils Casts Doubt on Their Exceptionality in Health and Disease. Front Immunol (2021) 12:625922. doi: 10.3389/fimmu.2021.625922 PubMed DOI PMC

Blanco-Camarillo C, Alemán OR, Rosales C. Low-Density Neutrophils in Healthy Individuals Display a Mature Primed Phenotype. Front Immunol (2021) 12:672520. doi: 10.3389/fimmu.2021.672520 PubMed DOI PMC

Aarts CEM, Hiemstra IH, Béguin EP, Hoogendijk AJ, Bouchmal S, van Houdt M, et al. . Activated Neutrophils Exert Myeloid-Derived Suppressor Cell Activity Damaging T Cells Beyond Repair. Blood Adv (2019) 3:3562–74. doi: 10.1182/bloodadvances.2019031609 PubMed DOI PMC

Pillay J, Kamp VM, van Hoffen E, Visser T, Tak T, Lammers J-W, et al. . A Subset of Neutrophils in Human Systemic Inflammation Inhibits T Cell Responses Through Mac-1. J Clin Invest (2012) 122:327–36. doi: 10.1172/JCI57990 PubMed DOI PMC

Carmona-Rivera C, Kaplan MJ. Low Density Granulocytes: A Distinct Class of Neutrophils in Systemic Autoimmunity. Semin Immunopathol (2013) 35:455–63. doi: 10.1007/s00281-013-0375-7 PubMed DOI PMC

Vlkova M, Chovancova Z, Nechvatalova J, Connelly AN, Davis MD, Slanina P, et al. . Neutrophil and Granulocytic Myeloid-Derived Suppressor Cell-Mediated T Cell Suppression Significantly Contributes to Immune Dysregulation in Common Variable Immunodeficiency Disorders. J Immunol (2019) 202:93–104. doi: 10.4049/jimmunol.1800102 PubMed DOI

Lood C, Blanco LP, Purmalek MM, Carmona-Rivera C, De Ravin SS, Smith CK, et al. . Neutrophil Extracellular Traps Enriched in Oxidized Mitochondrial DNA Are Interferogenic and Contribute to Lupus-Like Disease. Nat Med (2016) 22:146–53. doi: 10.1038/nm.4027 PubMed DOI PMC

Sagiv JY, Voels S, Granot Z. Isolation and Characterization of Low- vs. High-Density Neutrophils in Cancer. Methods Mol Biol (2016) 1458:179–93. doi: 10.1007/978-1-4939-3801-8_13 PubMed DOI

Grecian R, Whyte MKB, Walmsley SR. The Role of Neutrophils in Cancer. Br Med Bull (2018) 128:5–14. doi: 10.1093/bmb/ldy029 PubMed DOI PMC

McKenna E, Mhaonaigh AU, Wubben R, Dwivedi A, Hurley T, Kelly LA, et al. . Neutrophils: Need for Standardized Nomenclature. Front Immunol (2021) 12:602963. doi: 10.3389/fimmu.2021.602963 PubMed DOI PMC

Scapini P, Marini O, Tecchio C, Cassatella MA. Human Neutrophils in the Saga of Cellular Heterogeneity: Insights and Open Questions. Immunol Rev (2016) 273:48–60. doi: 10.1111/imr.12448 PubMed DOI

Rocha BC, Marques PE, Leoratti FM de S, Junqueira C, Pereira DB, Antonelli LR do V, et al. . Type I Interferon Transcriptional Signature in Neutrophils and Low-Density Granulocytes Are Associated With Tissue Damage in Malaria. Cell Rep (2015) 13:2829–41. doi: 10.1016/j.celrep.2015.11.055 PubMed DOI PMC

Morrissey SM, Geller AE, Hu X, Tieri D, Ding C, Klaes CK, et al. . A Specific Low-Density Neutrophil Population Correlates With Hypercoagulation and Disease Severity in Hospitalized COVID-19 Patients. JCI Insight (2021) 6:148435. doi: 10.1172/jci.insight.148435 PubMed DOI PMC

Cassetta L, Baekkevold ES, Brandau S, Bujko A, Cassatella MA, Dorhoi A, et al. . Deciphering Myeloid-Derived Suppressor Cells: Isolation and Markers in Humans, Mice and Non-Human Primates. Cancer Immunol Immunother (2019) 68:687–97. doi: 10.1007/s00262-019-02302-2 PubMed DOI PMC

Veglia F, Perego M, Gabrilovich D. Myeloid-Derived Suppressor Cells Coming of Age. Nat Immunol (2018) 19:108–19. doi: 10.1038/s41590-017-0022-x PubMed DOI PMC

Moses K, Brandau S. Human Neutrophils: Their Role in Cancer and Relation to Myeloid-Derived Suppressor Cells. Semin Immunol (2016) 28:187–96. doi: 10.1016/j.smim.2016.03.018 PubMed DOI

Uhel F, Azzaoui I, Grégoire M, Pangault C, Dulong J, Tadié J-M, et al. . Early Expansion of Circulating Granulocytic Myeloid-Derived Suppressor Cells Predicts Development of Nosocomial Infections in Patients With Sepsis. Am J Respir Crit Care Med (2017) 196:315–27. doi: 10.1164/rccm.201606-1143OC PubMed DOI

Rieber N, Singh A, Öz H, Carevic M, Bouzani M, Amich J, et al. . Pathogenic Fungi Regulate Immunity by Inducing Neutrophilic Myeloid-Derived Suppressor Cells. Cell Host Microbe (2015) 17:507–14. doi: 10.1016/j.chom.2015.02.007 PubMed DOI PMC

Bronte V, Brandau S, Chen S-H, Colombo MP, Frey AB, Greten TF, et al. . Recommendations for Myeloid-Derived Suppressor Cell Nomenclature and Characterization Standards. Nat Commun (2016) 7:12150. doi: 10.1038/ncomms12150 PubMed DOI PMC

Durand DB, Shaw JP, Bush MR, Replogle RE, Belagaje R, Crabtree GR. Characterization of Antigen Receptor Response Elements Within the Interleukin-2 Enhancer. Mol Cell Biol (1988) 8:1715–24. doi: 10.1128/MCB.8.4.1715 PubMed DOI PMC

Shaw JP, Utz PJ, Durand DB, Toole JJ, Emmel EA, Crabtree GR. Identification of a Putative Regulator of Early T Cell Activation Genes. Science (1988) 241:202–5. doi: 10.1126/science.3260404 PubMed DOI

Bendickova K, Tidu F, Fric J. Calcineurin-NFAT Signalling in Myeloid Leucocytes: New Prospects and Pitfalls in Immunosuppressive Therapy. EMBO Mol Med (2017) 9:990–9. doi: 10.15252/emmm.201707698 PubMed DOI PMC

Zanoni I, Granucci F. Regulation and Dysregulation of Innate Immunity by NFAT Signaling Downstream of Pattern Recognition Receptors (PRRs). Eur J Immunol (2012) 42:1924–31. doi: 10.1002/eji.201242580 PubMed DOI

Santus W, Barresi S, Mingozzi F, Broggi A, Orlandi I, Stamerra G, et al. . Skin Infections Are Eliminated by Cooperation of the Fibrinolytic and Innate Immune Systems. Sci Immunol (2017) 2:eaan2725. doi: 10.1126/sciimmunol.aan2725 PubMed DOI PMC

Goodridge HS, Simmons RM, Underhill DM. Dectin-1 Stimulation by Candida Albicans Yeast or Zymosan Triggers NFAT Activation in Macrophages and Dendritic Cells. J Immunol (2007) 178:3107–15. doi: 10.4049/jimmunol.178.5.3107 PubMed DOI

Zanoni I, Ostuni R, Capuano G, Collini M, Caccia M, Ronchi AE, et al. . CD14 Regulates the Dendritic Cell Life Cycle After LPS Exposure Through NFAT Activation. Nature (2009) 460:264–8. doi: 10.1038/nature08118 PubMed DOI

Marongiu L, Mingozzi F, Cigni C, Marzi R, Di Gioia M, Garrè M, et al. . Inositol 1,4,5-Trisphosphate 3-Kinase B Promotes Ca2+ Mobilization and the Inflammatory Activity of Dendritic Cells. Sci Signal (2021) 14:eaaz2120. doi: 10.1126/scisignal.aaz2120 PubMed DOI PMC

Bendíčková K, Tidu F, De Zuani M, Kohoutková MH, Andrejčinová I, Pompeiano A, et al. . Calcineurin Inhibitors Reduce NFAT-Dependent Expression of Antifungal Pentraxin-3 by Human Monocytes. J Leukoc Biol (2020) 107:497–508. doi: 10.1002/JLB.4VMA0318-138R PubMed DOI PMC

Herbst S, Shah A, Mazon Moya M, Marzola V, Jensen B, Reed A, et al. . Phagocytosis-Dependent Activation of a TLR9-BTK-Calcineurin-NFAT Pathway Co-Ordinates Innate Immunity to Aspergillus Fumigatus. EMBO Mol Med (2015) 7:240–58. doi: 10.15252/emmm.201404556 PubMed DOI PMC

Vega Rioja A, Chacon PJ, Monteseirín Mateo J, Bekay R, Alba Jiménez G, Martín Nieto J, et al. . Expression of the Transcription Factor NFAT2 in Human Neutrophils: IgE-Dependent, Ca2+- and Calcineurin-Mediated NFAT2 Activation. J Cell Sci (2007) 120(Pt 14):2328–37. doi: 10.1242/jcs.000331 PubMed DOI

Greenblatt MB, Aliprantis A, Hu B, Glimcher LH. Calcineurin Regulates Innate Antifungal Immunity in Neutrophils. J Exp Med (2010) 207:923–31. doi: 10.1084/jem.20092531 PubMed DOI PMC

Jin M, Yu B, Zhang W, Zhang W, Xiao Z, Mao Z, et al. . Toll-Like Receptor 2-Mediated MAPKs and NF-κb Activation Requires the GNAO1-Dependent Pathway in Human Mast Cells. Integr Biol (Camb) (2016) 8:968–75. doi: 10.1039/c6ib00097e PubMed DOI

Zaidi AK, Thangam ERRB, Ali H. Distinct Roles of Ca2+ Mobilization and G Protein Usage on Regulation of Toll-Like Receptor Function in Human and Murine Mast Cells. Immunology (2006) 119:412–20. doi: 10.1111/j.1365-2567.2006.02450.x PubMed DOI PMC

Zhang S, Wu M, Gao H. Editorial: NFAT Signaling: No FAT as New Weapon to Fight Shock. J Leukoc Biol (2015) 97:997–9. doi: 10.1189/jlb.4CE1214-616R PubMed DOI

Flanagan WM, Corthésy B, Bram RJ, Crabtree GR. Nuclear Association of a T-Cell Transcription Factor Blocked by FK-506 and Cyclosporin A. Nature (1991) 352:803–7. doi: 10.1038/352803a0 PubMed DOI

Müller MR, Rao A. NFAT, Immunity and Cancer: A Transcription Factor Comes of Age. Nat Rev Immunol (2010) 10:645–56. doi: 10.1038/nri2818 PubMed DOI

Qin J-J, Nag S, Wang W, Zhou J, Zhang W-D, Wang H, et al. . NFAT as Cancer Target: Mission Possible? Biochim Biophys Acta (2014) 1846:297–311. doi: 10.1016/j.bbcan.2014.07.009 PubMed DOI PMC

Herbst S, Shah A, Carby M, Chusney G, Kikkeri N, Dorling A, et al. . A New and Clinically Relevant Murine Model of Solid-Organ Transplant Aspergillosis. Dis Model Mech (2013) 6:643–51. doi: 10.1242/dmm.010330 PubMed DOI PMC

Tourneur E, Ben Mkaddem S, Chassin C, Bens M, Goujon J-M, Charles N, et al. . Cyclosporine A Impairs Nucleotide Binding Oligomerization Domain (Nod1)-Mediated Innate Antibacterial Renal Defenses in Mice and Human Transplant Recipients. PloS Pathog (2013) 9(1):e1003152. doi: 10.1371/journal.ppat.1003152 PubMed DOI PMC

Zhang S, Zhang S, Garcia-Vaz E, Herwald H, Gomez MF, Thorlacius H. Streptococcal M1 Protein Triggers Chemokine Formation, Neutrophil Infiltration, and Lung Injury in an NFAT-Dependent Manner. J Leukoc Biol (2015) 97:1003–10. doi: 10.1189/jlb.3HI0214-123RR PubMed DOI

Forrest MJ, Jewell ME, Koo GC, Sigal NH. FK-506 and Cyclosporin a: Selective Inhibition of Calcium Ionophore-Induced Polymorphonuclear Leukocyte Degranulation. Biochem Pharmacol (1991) 42:1221–8. doi: 10.1016/0006-2952(91)90257-6 PubMed DOI

Vandewalle A, Tourneur E, Bens M, Chassin C, Werts C. Calcineurin/NFAT Signaling and Innate Host Defence: A Role for NOD1-Mediated Phagocytic Functions. Cell Commun Signal (2014) 12:8. doi: 10.1186/1478-811X-12-8 PubMed DOI PMC

Busch R, Murti K, Liu J, Patra AK, Muhammad K, Knobeloch K-P, et al. . NFATc1 Releases BCL6-Dependent Repression of CCR2 Agonist Expression in Peritoneal Macrophages From Saccharomyces Cerevisiae Infected Mice. Eur J Immunol (2016) 46:634–46. doi: 10.1002/eji.201545925 PubMed DOI

Schaffner A, Douglas H, Braude A. Selective Protection Against Conidia by Mononuclear and Against Mycelia by Polymorphonuclear Phagocytes in Resistance to Aspergillus. Observations on These Two Lines of Defense In Vivo and In Vitro With Human and Mouse Phagocytes. J Clin Invest (1982) 69:617–31. doi: 10.1172/jci110489 PubMed DOI PMC

Cunha C, Kurzai O, Löffler J, Aversa F, Romani L, Carvalho A. Neutrophil Responses to Aspergillosis: New Roles for Old Players. Mycopathologia (2014) 178:387–93. doi: 10.1007/s11046-014-9796-7 PubMed DOI

Zelante T, Wong AYW, Mencarelli A, Foo S, Zolezzi F, Lee B, et al. . Impaired Calcineurin Signaling in Myeloid Cells Results in Downregulation of Pentraxin-3 and Increased Susceptibility to Aspergillosis. Mucosal Immunol (2017) 10:470–80. doi: 10.1038/mi.2016.52 PubMed DOI

Lacy P. Mechanisms of Degranulation in Neutrophils. Allergy Asthma Clin Immunol (2006) 2:98–108. doi: 10.1186/1710-1492-2-3-98 PubMed DOI PMC

Kharazmi A, Svenson M, Nielsen H, Birgens HS. Effect of Cyclosporin A on Human Neutrophil and Monocyte Function. Scand J Immunol (1985) 21:585–91. doi: 10.1111/j.1365-3083.1985.tb01848.x PubMed DOI

Hörl WH, Wanner C, Riegel W, Schlosser W, Wilms H, Schollmeyer P. Reduction of Degranulation of Polymorphonuclear Leukocytes by Immunosuppression in Patients Following Cadaveric Renal Transplantation. Transplantation (1989) 47:144–8. doi: 10.1097/00007890-198901000-00032 PubMed DOI

Yan P, Nanamori M, Sun M, Zhou C, Cheng N, Li N, et al. . The Immunosuppressant Cyclosporin A Antagonizes Human Formyl Peptide Receptor Through Inhibition of Cognate Ligand Binding. J Immunol (2006) 177:7050–8. doi: 10.4049/jimmunol.177.10.7050 PubMed DOI

Gupta AK, Giaglis S, Hasler P, Hahn S. Efficient Neutrophil Extracellular Trap Induction Requires Mobilization of Both Intracellular and Extracellular Calcium Pools and Is Modulated by Cyclosporine A. PloS One (2014) 9:e97088. doi: 10.1371/journal.pone.0097088 PubMed DOI PMC

Wang X, Bi Y, Xue L, Liao J, Chen X, Lu Y, et al. . The Calcineurin-NFAT Axis Controls Allograft Immunity in Myeloid-Derived Suppressor Cells Through Reprogramming T Cell Differentiation. Mol Cell Biol (2015) 35:598–609. doi: 10.1128/MCB.01251-14 PubMed DOI PMC

Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, et al. . The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA (2016) 315:801–10. doi: 10.1001/jama.2016.0287 PubMed DOI PMC

Boomer JS, To K, Chang KC, Takasu O, Osborne DF, Walton AH, et al. . Immunosuppression in Patients Who Die of Sepsis and Multiple Organ Failure. JAMA (2011) 306:2594–605. doi: 10.1001/jama.2011.1829 PubMed DOI PMC

Hotchkiss RS, Monneret G, Payen D. Sepsis-Induced Immunosuppression: From Cellular Dysfunctions to Immunotherapy. Nat Rev Immunol (2013) 13:862–74. doi: 10.1038/nri3552 PubMed DOI PMC

Sônego F, Castanheira FV e S, Ferreira RG, Kanashiro A, Leite CAVG, Nascimento DC, et al. . Paradoxical Roles of the Neutrophil in Sepsis: Protective and Deleterious. Front Immunol (2016) 7:155. doi: 10.3389/fimmu.2016.00155 PubMed DOI PMC

Kovach MA, Standiford TJ. The Function of Neutrophils in Sepsis. Curr Opin Infect Dis (2012) 25:321–7. doi: 10.1097/QCO.0b013e3283528c9b PubMed DOI

Shen X, Cao K, Jiang J, Guan W, Du J. Neutrophil Dysregulation During Sepsis: An Overview and Update. J Cell Mol Med (2017) 21:1687–97. doi: 10.1111/jcmm.13112 PubMed DOI PMC

Demaret J, Venet F, Friggeri A, Cazalis M-A, Plassais J, Jallades L, et al. . Marked Alterations of Neutrophil Functions During Sepsis-Induced Immunosuppression. J Leukoc Biol (2015) 98:1081–90. doi: 10.1189/jlb.4A0415-168RR PubMed DOI

Esquerdo KF, Sharma NK, Brunialti MKC, Baggio-Zappia GL, Assunção M, Azevedo LCP, et al. . Inflammasome Gene Profile Is Modulated in Septic Patients, With a Greater Magnitude in Non-Survivors. Clin Exp Immunol (2017) 189:232–40. doi: 10.1111/cei.12971 PubMed DOI PMC

Danikas DD, Karakantza M, Theodorou GL, Sakellaropoulos GC, Gogos CA. Prognostic Value of Phagocytic Activity of Neutrophils and Monocytes in Sepsis. Correlation to CD64 and CD14 Antigen Expression. Clin Exp Immunol (2008) 154:87–97. doi: 10.1111/j.1365-2249.2008.03737.x PubMed DOI PMC

Darcy CJ, Minigo G, Piera KA, Davis JS, McNeil YR, Chen Y, et al. . Neutrophils With Myeloid Derived Suppressor Function Deplete Arginine and Constrain T Cell Function in Septic Shock Patients. Crit Care (2014) 18:R163. doi: 10.1186/cc14003 PubMed DOI PMC

De Zuani M, Hortová-Kohoutková M, Andrejčinová I, Tomášková V, Šrámek V, Helán M, et al. . Human Myeloid-Derived Suppressor Cell Expansion During Sepsis Is Revealed by Unsupervised Clustering of Flow Cytometric Data. Eur J Immunol (2021) 51(7):1785–91. doi: 10.1002/eji.202049141 PubMed DOI PMC

Janols H, Bergenfelz C, Allaoui R, Larsson A-M, Rydén L, Björnsson S, et al. . A High Frequency of MDSCs in Sepsis Patients, With the Granulocytic Subtype Dominating in Gram-Positive Cases. J Leukoc Biol (2014) 96:685–93. doi: 10.1189/jlb.5HI0214-074R PubMed DOI

Mathias B, Delmas AL, Ozrazgat-Baslanti T, Vanzant EL, Szpila BE, Mohr AM, et al. . Human Myeloid-Derived Suppressor Cells Are Associated With Chronic Immune Suppression After Severe Sepsis/Septic Shock. Ann Surg (2017) 265:827–34. doi: 10.1097/SLA.0000000000001783 PubMed DOI PMC

Schrijver IT, Théroude C, Roger T. Myeloid-Derived Suppressor Cells in Sepsis. Front Immunol (2019) 10:327. doi: 10.3389/fimmu.2019.00327 PubMed DOI PMC

Aramburu J, Yaffe MB, López-Rodríguez C, Cantley LC, Hogan PG, Rao A. Affinity-Driven Peptide Selection of an NFAT Inhibitor More Selective Than Cyclosporin A. Science (1999) 285:2129–33. doi: 10.1126/science.285.5436.2129 PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...