Calcineurin inhibitors reduce NFAT-dependent expression of antifungal pentraxin-3 by human monocytes
Language English Country England, Great Britain Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
30934147
PubMed Central
PMC7064969
DOI
10.1002/jlb.4vma0318-138r
Knihovny.cz E-resources
- Keywords
- Tacrolimus, antifungal response, cyclosporine A, pattern recognition receptor signaling,
- MeSH
- Antifungal Agents metabolism MeSH
- Aspergillus fumigatus drug effects MeSH
- C-Reactive Protein metabolism MeSH
- Chemokines metabolism MeSH
- Cyclosporine pharmacology MeSH
- Calcineurin Inhibitors pharmacology MeSH
- Interleukin-10 metabolism MeSH
- Humans MeSH
- Monocytes drug effects metabolism MeSH
- Myeloid Cells drug effects metabolism MeSH
- Mice MeSH
- Base Sequence MeSH
- Sequence Homology, Amino Acid MeSH
- Serum Amyloid P-Component metabolism MeSH
- Signal Transduction drug effects MeSH
- THP-1 Cells MeSH
- Tumor Necrosis Factor-alpha metabolism MeSH
- NFATC Transcription Factors metabolism MeSH
- Protein Transport drug effects MeSH
- Binding Sites MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Antifungal Agents MeSH
- C-Reactive Protein MeSH
- Chemokines MeSH
- Cyclosporine MeSH
- Calcineurin Inhibitors MeSH
- Interleukin-10 MeSH
- PTX3 protein MeSH Browser
- Serum Amyloid P-Component MeSH
- Tumor Necrosis Factor-alpha MeSH
- NFATC Transcription Factors MeSH
Calcineurin (CN) inhibitors are effective clinical immunosuppressants but leave patients vulnerable to potentially fatal fungal infections. This study tested the hypothesis that CN inhibition interferes with antifungal immune defenses mediated by monocytes. We showed that NFAT is expressed by human monocytes, and is activated by exposure to fungal ligands. We confirmed that NFAT translocation potently activated target gene transcription using a human monocytic reporter cell line. Inhibition of CN-NFAT by cyclosporine A significantly reduced monocyte production of TNF-α, IL-10, and MCP-1 proteins in response to pattern recognition receptor ligands as well as to Aspergillus fumigatus conidia. Moreover, we revealed that human monocytes express the antifungal protein pentraxin-3 under control of NFAT. In conclusion, clinical CN inhibitors have the potential to interfere with the novel NFAT-dependent pentraxin-3 pathway as well as antifungal cytokine production in human monocytes, thereby impeding monocyte-mediated defenses against fungal infection in immune-suppressed patients.
Department of Biology Faculty of Medicine Masaryk University Brno Czech Republic
Department of Experimental Medicine University of Perugia Perugia Italy
International Clinical Research Center St Anne's University Hospital Brno Brno Czech Republic
See more in PubMed
Rush D. The impact of calcineurin inhibitors on graft survival. Transplant Rev (Orlando). 2013;27:93‐95. PubMed
Vaeth M, Bauerlein CA, Pusch T, et al. Selective NFAT targeting in T cells ameliorates GvHD while maintaining antitumor activity. PNAS. 2015;112:1125‐1130. PubMed PMC
Nasu R, Nannya Y, Shinohara A, Ichikawa M, Kurokawa M. Favorable outcomes of tacrolimus compared with cyclosporine A for GVHD prophylaxis in HSCT for standard‐risk hematological diseases. Ann Hematol. 2014;93:1215‐1223. PubMed
Bendickova K, Tidu F, Fric J. Calcineurin‐NFAT signalling in myeloid leucocytes: new prospects and pitfalls in immunosuppressive therapy. EMBO Mol Med. 2017;9:990‐999. PubMed PMC
Fishman JA. Infections in immunocompromised hosts and organ transplant recipients: essentials. Liver Transpl. 2011;17(Suppl 3):S34‐7. PubMed
Steinmann J, Hamprecht A, Vehreschild MJ, et al. Emergence of azole‐resistant invasive aspergillosis in HSCT recipients in Germany. J Antimicrob Chemother. 2015;70:1522‐1526. PubMed
Baddley JW, Andes DR, Marr KA, et al. Factors associated with mortality in transplant patients with invasive aspergillosis. Clin Infect Dis. 2010;50:1559‐1567. PubMed PMC
Pappas PG, Alexander BD, Andes DR, et al. Invasive fungal infections among organ transplant recipients: results of the Transplant‐Associated Infection Surveillance Network (TRANSNET). Clin Infect Dis. 2010;50:1101‐1111. PubMed
Fric J, Zelante T, Wong AY, Mertes A, Yu HB, Ricciardi‐Castagnoli P. NFAT control of innate immunity. Blood. 2012;120:1380‐1389. PubMed
Granucci F, Vizzardelli C, Pavelka N, et al. Inducible IL‐2 production by dendritic cells revealed by global gene expression analysis. Nat Immunol. 2001;2:882‐888. PubMed
Granucci F, Feau S, Angeli V, Trottein F, Ricciardi‐Castagnoli P. Early IL‐2 production by mouse dendritic cells is the result of microbial‐induced priming. J Immunol. 2003;170:5075‐5081. PubMed
Zelante T, Wong AY, Ping TJ, et al. CD103(+) dendritic cells control Th17 cell function in the lung. Cell Rep. 2015;12:1789‐1801. PubMed
Mencarelli A, Khameneh HJ, Fric J, et al. Calcineurin‐mediated IL‐2 production by CD11c(high)MHCII(+) myeloid cells is crucial for intestinal immune homeostasis. Nat Commun. 2018;9:1102. PubMed PMC
Yu HB, Yurieva M, Balachander A, et al. NFATc2 mediates epigenetic modification of dendritic cell cytokine and chemokine responses to dectin‐1 stimulation. Nucleic Acids Res. 2015;43:836‐847. PubMed PMC
Jennings C, Kusler B, Jones PP. Calcineurin inactivation leads to decreased responsiveness to LPS in macrophages and dendritic cells and protects against LPS‐induced toxicity in vivo. Innate Immun. 2009;15:109‐120. PubMed PMC
Elloumi HZ, Maharshak N, Rao KN, et al. A cell permeable peptide inhibitor of NFAT inhibits macrophage cytokine expression and ameliorates experimental colitis. PLoS One. 2012;7:e34172. PubMed PMC
Herbst S, Shah A, Carby M, et al. A new and clinically relevant murine model of solid‐organ transplant aspergillosis. Dis Model Mech. 2013;6:643‐651. PubMed PMC
Shah A, Kannambath S, Herbst S, et al. Calcineurin orchestrates lateral transfer of aspergillus fumigatus during macrophage cell death. Am J Respir Crit Care Med. 2016;194:1127‐1139. PubMed PMC
Bercusson A, Colley T, Shah A, Warris A, Armstrong‐James D. Ibrutinib blocks Btk‐dependent NF‐kB and NFAT responses in human macrophages during Aspergillus fumigatus phagocytosis. Blood. 2018;132:1985‐1988. PubMed PMC
Zanoni I, Ostuni R, Capuano G, et al. CD14 regulates the dendritic cell life cycle after LPS exposure through NFAT activation. Nature. 2009;460:264‐268. PubMed
Herbst S, Shah A, Mazon Moya M, et al. Phagocytosis‐dependent activation of a TLR9‐BTK‐calcineurin‐NFAT pathway co‐ordinates innate immunity to Aspergillus fumigatus. EMBO Mol Med. 2015;7:240‐258. PubMed PMC
Goodridge HS, Simmons RM, Underhill DM. Dectin‐1 stimulation by Candida albicans yeast or zymosan triggers NFAT activation in macrophages and dendritic cells. J Immunol. 2007;178:3107‐3115. PubMed
Cunha C, Di Ianni M, Bozza S, et al. Dectin‐1 Y238X polymorphism associates with susceptibility to invasive aspergillosis in hematopoietic transplantation through impairment of both recipient‐ and donor‐dependent mechanisms of antifungal immunity. Blood. 2010;116:5394‐5402. PubMed
Dambuza IM, Brown GD. C‐type lectins in immunity: recent developments. Curr Opin Immunol. 2015;32:21‐27. PubMed PMC
Greenblatt MB, Aliprantis A, Hu B, Glimcher LH. Calcineurin regulates innate antifungal immunity in neutrophils. J Exp Med. 2010. PubMed PMC
Zelante T, Wong AY, Mencarelli A, et al. Impaired calcineurin signaling in myeloid cells results in downregulation of pentraxin‐3 and increased susceptibility to aspergillosis. Mucosal Immunol. 2017;10:470‐480. PubMed
Garlanda C, Hirsch E, Bozza S, et al. Non‐redundant role of the long pentraxin PTX3 in anti‐fungal innate immune response. Nature. 2002;420:182‐186. PubMed
Cunha C, Aversa F, Lacerda JF, et al. Genetic PTX3 deficiency and aspergillosis in stem‐cell transplantation. N Engl J Med. 2014;370:421‐432. PubMed
Imamura M, Kawasaki T, Savchenko AS, et al. Lipopolysaccharide induced expression of pentraxin 3 in human neutrophils and monocyte‐derived macrophages. Cell Immunol. 2007;248:86‐94. PubMed
Jaillon S, Peri G, Delneste Y, et al. The humoral pattern recognition receptor PTX3 is stored in neutrophil granules and localizes in extracellular traps. J Exp Med. 2007;204:793‐804. PubMed PMC
Moalli F, Doni A, Deban L, et al. Role of complement and Fc{gamma} receptors in the protective activity of the long pentraxin PTX3 against Aspergillus fumigatus. Blood. 2010;116:5170‐5180. PubMed
Basile A, Sica A, d'Aniello E, et al. Characterization of the promoter for the human long pentraxin PTX3. Role of NF‐kappaB in tumor necrosis factor‐alpha and interleukin‐1beta regulation. J Biol Chem. 1997;272:8172‐8178. PubMed
Schindelin J, Arganda‐Carreras I, Frise E, et al. Fiji: an open‐source platform for biological‐image analysis. Nat Methods. 2012;9:676‐682. PubMed PMC
Ziegler‐Heitbrock L, Ancuta P, Crowe S, et al. Nomenclature of monocytes and dendritic cells in blood. Blood. 2010;116:e74‐80. PubMed
Davis S, Meltzer PS. GEOquery: a bridge between the gene expression omnibus (GEO) and BioConductor. Bioinformatics. 2007;23:1846‐1847. PubMed
Ritchie ME, Phipson B, Wu D, et al. limma powers differential expression analyses for RNA‐sequencing and microarray studies. Nucleic Acids Res. 2015;43:e47. PubMed PMC
Frazer KA, Pachter L, Poliakov A, Rubin EM, Dubchak I. VISTA: computational tools for comparative genomics. Nucleic Acids Res. 2004;32:W273‐9. PubMed PMC
Lee C, Huang CH. LASAGNA‐Search: an integrated web tool for transcription factor binding site search and visualization. Bio Techniques. 2013;54:141‐153. PubMed
Khan A, Fornes O, Stigliani A, et al. JASPAR 2018: update of the open‐access database of transcription factor binding profiles and its web framework. Nucleic Acids Res. 2018;46:D260‐D266. PubMed PMC
Heimbeck I, Hofer TP, Eder C, et al. Standardized single‐platform assay for human monocyte subpopulations: lower CD14+CD16++ monocytes in females. Cytometry A. 2010;77:823‐830. PubMed
Breviario F, d'Aniello EM, Golay J, et al. Interleukin‐1‐inducible genes in endothelial cells. Cloning of a new gene related to C‐reactive protein and serum amyloid P component. J Biol Chem. 1992;267:22190‐22197. PubMed
Altmeyer A, Klampfer L, Goodman AR, Vilcek J. Promoter structure and transcriptional activation of the murine TSG‐14 gene encoding a tumor necrosis factor/interleukin‐1‐inducible pentraxin protein. J Biol Chem. 1995;270:25584‐25590. PubMed
Imbert S, Bresler P, Boissonnas A, et al. Calcineurin inhibitors impair neutrophil activity against Aspergillus fumigatus in allogeneic hematopoietic stem cell transplant recipients. J Allergy Clin Immunol. 2016;138:860‐868. PubMed
Tourneur E, Ben Mkaddem S, Chassin C, et al. Cyclosporine A impairs nucleotide binding oligomerization domain (Nod1)‐mediated innate antibacterial renal defenses in mice and human transplant recipients. PLoS Pathog. 2013;9:e1003152. PubMed PMC
Serbina NV, Jia T, Hohl TM, Pamer EG. Monocyte‐mediated defense against microbial pathogens. Annu Rev Immunol. 2008;26:421‐452. PubMed PMC
Ketter P, Yu JJ, Cap AP, Forsthuber T, Arulanandam B. Pentraxin 3: an immune modulator of infection and useful marker for disease severity assessment in sepsis. Expert Rev Clin Immunol. 2016;12:501‐507. PubMed
Daigo K, Nakakido M, Ohashi R, et al. Protective effect of the long pentraxin PTX3 against histone‐mediated endothelial cell cytotoxicity in sepsis. Sci Signal. 2014;7:ra88. PubMed
Pachot A, Lepape A, Vey S, Bienvenu J, Mougin B, Monneret G. Systemic transcriptional analysis in survivor and non‐survivor septic shock patients: a preliminary study. Immunol Lett. 2006;106:63‐71. PubMed
Tang BM, Huang SJ, McLean AS. Genome‐wide transcription profiling of human sepsis: a systematic review. Crit Care. 2010;14:R237. PubMed PMC
Hotchkiss RS, Coopersmith CM, McDunn JE, Ferguson TA. The sepsis seesaw: tilting toward immunosuppression. Nat Med. 2009;15:496‐497. PubMed PMC
Boomer JS, To K, Chang KC, et al. Immunosuppression in patients who die of sepsis and multiple organ failure. JAMA. 2011;306:2594‐2605. PubMed PMC
Ziegler‐Heitbrock HW, Strobel M, Kieper D, et al. Differential expression of cytokines in human blood monocyte subpopulations. Blood. 1992;79:503‐511. PubMed
Gaziano R, Bozza S, Bellocchio S, et al. Anti‐Aspergillus fumigatus efficacy of pentraxin 3 alone and in combination with antifungals. Antimicrob Agents Chemother. 2004;48:4414‐4421. PubMed PMC
Caironi P, Masson S, Mauri T, et al. Pentraxin 3 in patients with severe sepsis or shock: the ALBIOS trial. Eur J Clin Invest. 2017;47:73‐83. PubMed PMC
Jie H, Li Y, Pu X, Ye J. Pentraxin 3, a predicator for 28‐day mortality in patients with septic shock. Am J Med Sci. 2017;353:242‐246. PubMed
Kurt OK, Tosun M, Kurt EB, Talay F. Pentraxin 3 as a novel biomarker of inflammation in chronic obstructive pulmonary disease. Inflammation. 2015;38:89‐93. PubMed
Pang Z, Junkins RD, MacNeil AJ, et al. The calcineurin‐NFAT axis contributes to host defense during Pseudomonas aeruginosa lung infection. J Leukoc Biol. 2017;102:1461‐1469. PubMed
Junkins RD, MacNeil AJ, Wu Z, McCormick C, Lin TJ. Regulator of calcineurin 1 suppresses inflammation during respiratory tract infections. J Immunol. 2013;190:5178‐5186. PubMed
Frantz B, Nordby EC, Bren G, et al. Calcineurin acts in synergy with PMA to inactivate I kappa B/MAD3, an inhibitor of NF‐kappa B. EMBO J. 1994;13:861‐870. PubMed PMC