• This record comes from PubMed

Roles of IL-2 in bridging adaptive and innate immunity, and as a tool for cellular immunotherapy

. 2020 Jul ; 108 (1) : 427-437. [epub] 20200601

Language English Country Great Britain, England Media print-electronic

Document type Journal Article, Research Support, Non-U.S. Gov't, Review

IL-2 was initially characterized as a T cell growth factor in the 1970s, and has been studied intensively ever since. Decades of research have revealed multiple and diverse roles for this potent cytokine, indicating a unique linking role between adaptive and innate arms of the immune system. Here, we review the literature showing that IL-2 is expressed in a plethora of cell types across the immune system, where it has indispensable functions in orchestrating cellular interactions and shaping the nature and magnitude of immune responses. Emerging from the basic research that has revealed the molecular mechanisms and the complexity of the biologic actions of IL-2, several immunotherapeutic approaches have now focused on manipulating the levels of this cytokine in patients. These strategies range from inhibition of IL-2 to achieve immunosuppression, to the application of IL-2 as a vaccine adjuvant and in cancer therapies. This review will systematically summarize the major findings in the field and identify key areas requiring further research in order to realize the potential of IL-2 in the treatment of human diseases.

See more in PubMed

Morgan DA, Ruscetti FW, Gallo R. Selective in vitro growth of T lymphocytes from normal human bone marrows. Science. 1976;193:1007‐1008. PubMed

Gillis S, Smith KA. Long term culture of tumour‐specific cytotoxic T cells. Nature. 1977;268:154‐156. PubMed

Malek TR, Castro I. Interleukin‐2 receptor signaling: at the interface between tolerance and immunity. Immunity. 2010;33:153‐165. PubMed PMC

Klatzmann D, Abbas AK. The promise of low‐dose interleukin‐2 therapy for autoimmune and inflammatory diseases. Nat Rev Immunol. 2015;15:283‐294. PubMed

Durand DB, Shaw JP, Bush MR, Replogle RE, Belagaje R, Crabtree GR. Characterization of antigen receptor response elements within the interleukin‐2 enhancer. Mol Cell Biol. 1988;8:1715‐1724. PubMed PMC

Shaw JP, Utz PJ, Durand DB, Toole JJ, Emmel EA, Crabtree GR. Identification of a putative regulator of early T cell activation genes. Science. 1988;241:202‐205. PubMed

Okamura H, Aramburu J, Garcia‐Rodriguez C, et al. Concerted dephosphorylation of the transcription factor NFAT1 induces a conformational switch that regulates transcriptional activity. Mol Cell. 2000;6:539‐550. PubMed

Jain J, McCaffrey PG, Miner Z, et al. The T‐cell transcription factor NFATp is a substrate for calcineurin and interacts with Fos and Jun. Nature. 1993;365:352‐355. PubMed

Bendickova K, Tidu F, De Zuani M, et al. Calcineurin inhibitors reduce NFAT‐dependent expression of antifungal pentraxin‐3 by human monocytes. J Leukocyte Biol. 2020;107:497‐508. PubMed PMC

Peng SL, Gerth AJ, Ranger AM, Glimcher LH. NFATc1 and NFATc2 together control both T and B cell activation and differentiation. Immunity. 2001;14:13‐20. PubMed

Yoshida H, Nishina H, Takimoto H, et al. The transcription factor NF‐ATc1 regulates lymphocyte proliferation and Th2 cytokine production. Immunity. 1998;8:115‐124. PubMed

Hwang ES, Hong JH, Glimcher LH. IL‐2 production in developing Th1 cells is regulated by heterodimerization of RelA and T‐bet and requires T‐bet serine residue 508. J Exp Med. 2005;202:1289‐1300. PubMed PMC

Macian F, Lopez‐Rodriguez C, Rao A. Partners in transcription: nFAT and AP‐1. Oncogene. 2001;20:2476‐2489. PubMed

Wu Y, Borde M, Heissmeyer V, et al. FOXP3 controls regulatory T cell function through cooperation with NFAT. Cell. 2006;126:375‐387. PubMed

Bettelli E, Dastrange M, Oukka M. Foxp3 interacts with nuclear factor of activated T cells and NF‐kappa B to repress cytokine gene expression and effector functions of T helper cells. Proc Natl Acad Sci USA. 2005;102:5138‐5143. PubMed PMC

Schreiber SL, Crabtree GR. The mechanism of action of cyclosporin A and FK506. Immunol Today. 1992;13:136‐142. PubMed

Rush D. The impact of calcineurin inhibitors on graft survival. Transplant Rev (Orlando). 2013;27:93‐95. PubMed

Vaeth M, Bauerlein CA, Pusch T, et al. Selective NFAT targeting in T cells ameliorates GvHD while maintaining antitumor activity. Proc Natl Acad Sci USA. 2015;112:1125‐1130. PubMed PMC

Nasu R, Nannya Y, Shinohara A, Ichikawa M, Kurokawa M. Favorable outcomes of tacrolimus compared with cyclosporine A for GVHD prophylaxis in HSCT for standard‐risk hematological diseases. Ann Hematol. 2014;93:1215‐1223. PubMed

Bendickova K, Tidu F, Fric J. Calcineurin‐NFAT signalling in myeloid leucocytes: new prospects and pitfalls in immunosuppressive therapy. EMBO Mol Med. 2017;9:990‐999. PubMed PMC

von Spee‐Mayer C, Siegert E, Abdirama D, et al. Low‐dose interleukin‐2 selectively corrects regulatory T cell defects in patients with systemic lupus erythematosus. Ann Rheum Dis. 2016;75:1407‐1415. PubMed

He J, Zhang R, Shao M, et al. Efficacy and safety of low‐dose IL‐2 in the treatment of systemic lupus erythematosus: a randomised, double‐blind, placebo‐controlled trial. Ann Rheum Dis. 2020;79:141‐149. PubMed PMC

He J, Zhang X, Wei Y, et al. Low‐dose interleukin‐2 treatment selectively modulates CD4(+) T cell subsets in patients with systemic lupus erythematosus. Nat Med. 2016;22:991‐993. PubMed

Humrich JY, Riemekasten G. Low‐dose interleukin‐2 therapy for the treatment of systemic lupus erythematosus. Curr Opin Rheumatol. 2019;31:208‐212. PubMed

Rosenzwajg M, Lorenzon R, Cacoub P, et al. Immunological and clinical effects of low‐dose interleukin‐2 across 11 autoimmune diseases in a single, open clinical trial. Ann Rheum Dis. 2019;78:209‐217. PubMed

Saadoun D, Rosenzwajg M, Joly F, et al. Regulatory T‐cell responses to low‐dose interleukin‐2 in HCV‐induced vasculitis. N Engl J Med. 2011;365:2067‐2077. PubMed

Todd JA, Evangelou M, Cutler AJ, et al. Regulatory T cell responses in participants with type 1 diabetes after a single dose of interleukin‐2: a non‐randomised, open label, adaptive dose‐finding trial. PLoS Med. 2016;13:e1002139. PubMed PMC

Rosenzwajg M, Churlaud G, Mallone R, et al. Low‐dose interleukin‐2 fosters a dose‐dependent regulatory T cell tuned milieu in T1D patients. J Autoimmun. 2015;58:48‐58. PubMed PMC

Hartemann A, Bensimon G, Payan CA, et al. Low‐dose interleukin 2 in patients with type 1 diabetes: a phase 1/2 randomised, double‐blind, placebo‐controlled trial. Lancet Diabetes Endocrinol. 2013;1:295‐305. PubMed

Yu A, Snowhite I, Vendrame F, et al. Selective IL‐2 responsiveness of regulatory T cells through multiple intrinsic mechanisms supports the use of low‐dose IL‐2 therapy in type 1 diabetes. Diabetes. 2015;64:2172‐2183. PubMed

Castela E, Le Duff F, Butori C, et al. Effects of low‐dose recombinant interleukin 2 to promote T‐regulatory cells in alopecia areata. JAMA Dermatol. 2014;150:748‐751. PubMed

Koreth J, Matsuoka K, Kim HT, et al. Interleukin‐2 and regulatory T cells in graft‐versus‐host disease. N Engl J Med. 2011;365:2055‐2066. PubMed PMC

Kennedy‐Nasser AA, Ku S, Castillo‐Caro P, et al. Ultra low‐dose IL‐2 for GVHD prophylaxis after allogeneic hematopoietic stem cell transplantation mediates expansion of regulatory T cells without diminishing antiviral and antileukemic activity. Clin Cancer Res. 2014;20:2215‐2225. PubMed PMC

Matsuoka K, Koreth J, Kim HT, et al. Low‐dose interleukin‐2 therapy restores regulatory T cell homeostasis in patients with chronic graft‐versus‐host disease. Sci Transl Med. 2013;5:179ra43. PubMed PMC

Whangbo JS, Kim HT, Mirkovic N, et al. Dose‐escalated interleukin‐2 therapy for refractory chronic graft‐versus‐host disease in adults and children. Blood Adv. 2019;3:2550‐2561. PubMed PMC

Li Y, Liu X, Wang W, et al. Low‐dose IL‐2 expands CD4(+) regulatory T cells with a suppressive function in vitro via the STAT5‐dependent pathway in patients with chronic kidney diseases. Ren Fail. 2018;40:280‐288. PubMed PMC

Xiao J, Yu K, Li M, Xiong C, Wei Y, Zeng Q. The IL‐2/Anti‐IL‐2 complex attenuates cardiac ischaemia‐reperfusion injury through expansion of regulatory T cells. Cell Physiol Biochem. 2017;44:1810‐1827. PubMed

Zhang R, Xi X, Wang C, et al. Therapeutic effects of recombinant human interleukin 2 as adjunctive immunotherapy against tuberculosis: a systematic review and meta‐analysis. PLoS One. 2018;13:e0201025. PubMed PMC

Tan Q, Min R, Dai GQ, et al. Clinical and immunological effects of rhIL‐2 therapy in eastern chinese patients with multidrug‐resistant tuberculosis. Sci Rep. 2017;7:17854. PubMed PMC

Molloy MJ, Zhang W, Usherwood EJ. Cutting edge: iL‐2 immune complexes as a therapy for persistent virus infection. J Immunol. 2009;182:4512‐4515. PubMed PMC

Tavel JA, Sereti I, Walker RE, et al. A randomized, double‐blinded, placebo‐controlled trial of intermittent administration of interleukin‐2 and prednisone in subjects infected with human immunodeficiency virus. J Infect Dis. 2003;188:531‐536. PubMed

Kovacs JA, Vogel S, Metcalf JA, et al. Interleukin‐2 induced immune effects in human immunodeficiency virus‐infected patients receiving intermittent interleukin‐2 immunotherapy. Eur J Immunol. 2001;31:1351‐1360. PubMed

Atkins MB, Kunkel L, Sznol M, Rosenberg SA. High‐dose recombinant interleukin‐2 therapy in patients with metastatic melanoma: long‐term survival update. Cancer J Sci Am 6 Suppl. 2000;1:S11‐4. PubMed

Davar D, Ding F, Saul M, et al. High‐dose interleukin‐2 (HD IL‐2) for advanced melanoma: a single center experience from the University of Pittsburgh Cancer Institute. J Immunother Cancer. 2017;5:74. PubMed PMC

Buchbinder EI, Dutcher JP, Daniels GA, et al. Therapy with high‐dose Interleukin‐2 (HD IL‐2) in metastatic melanoma and renal cell carcinoma following PD1 or PDL1 inhibition. J Immunother Cancer. 2019;7:49. PubMed PMC

Ahmadzadeh M, Rosenberg SA. IL‐2 administration increases CD4+ CD25(hi) Foxp3+ regulatory T cells in cancer patients. Blood. 2006;107:2409‐2414. PubMed PMC

Lim SH, Newland AC, Kelsey S, et al. Continuous intravenous infusion of high‐dose recombinant interleukin‐2 for acute myeloid leukaemia–a phase II study. Cancer Immunol Immunother. 1992;34:337‐342. PubMed PMC

Foa R, Meloni G, Tosti S, et al. Treatment of acute myeloid leukaemia patients with recombinant interleukin 2: a pilot study. Br J Haematol. 1991;77:491‐496. PubMed

Macdonald D, Jiang YZ, Gordon AA, et al. Recombinant interleukin 2 for acute myeloid leukaemia in first complete remission: a pilot study. Leukemia Res. 1990;14:967‐973. PubMed

Miller JS, Soignier Y, Panoskaltsis‐Mortari A, et al. Successful adoptive transfer and in vivo expansion of human haploidentical NK cells in patients with cancer. Blood. 2005;105:3051‐3057. PubMed

Bachanova V, Cooley S, Defor TE, et al. Clearance of acute myeloid leukemia by haploidentical natural killer cells is improved using IL‐2 diphtheria toxin fusion protein. Blood. 2014;123:3855‐3863. PubMed PMC

Burns LJ, Weisdorf DJ, DeFor TE, et al. IL‐2‐based immunotherapy after autologous transplantation for lymphoma and breast cancer induces immune activation and cytokine release: a phase I/II trial. Bone Marrow Transplant. 2003;32:177‐186. PubMed

Burjanadze M, Condomines M, Reme T, et al. In vitro expansion of gamma delta T cells with anti‐myeloma cell activity by Phosphostim and IL‐2 in patients with multiple myeloma. Br J Haematol. 2007;139:206‐216. PubMed

Bamford RN, Grant AJ, Burton JD, et al. The interleukin (IL) 2 receptor beta chain is shared by IL‐2 and a cytokine, provisionally designated IL‐T, that stimulates T‐cell proliferation and the induction of lymphokine‐activated killer cells. Proc Natl Acad Sci USA. 1994;91:4940‐4944. PubMed PMC

Wang X, Rickert M, Garcia KC. Structure of the quaternary complex of interleukin‐2 with its alpha, beta, and gammac receptors. Science. 2005;310:1159‐1163. PubMed

Boyman O, Sprent J. The role of interleukin‐2 during homeostasis and activation of the immune system. Nat Rev Immunol. 2012;12:180‐190. PubMed

Rochman Y, Spolski R, Leonard WJ. New insights into the regulation of T cells by gamma(c) family cytokines. Nat Rev Immunol. 2009;9:480‐490. PubMed PMC

Deho L, Leoni C, Brodie TM, et al. Two functionally distinct subsets of mast cells discriminated By IL‐2‐independent CD25 activities. J Immunol. 2014;193:2196‐2206. PubMed

Jaleco S, Swainson L, Dardalhon V, Burjanadze M, Kinet S, Taylor N. Homeostasis of naive and memory CD4+ T cells: iL‐2 and IL‐7 differentially regulate the balance between proliferation and Fas‐mediated apoptosis. J Immunol. 2003;171:61‐68. PubMed

Cheng G, Yu A, Dee MJ, Malek TR. IL‐2R signaling is essential for functional maturation of regulatory T cells during thymic development. J Immunol. 2013;190:1567‐1575. PubMed PMC

Weist BM, Kurd N, Boussier J, Chan SW, Robey EA. Thymic regulatory T cell niche size is dictated by limiting IL‐2 from antigen‐bearing dendritic cells and feedback competition. NatImmunol. 2015;16:635‐641. PubMed PMC

Owen DL, Mahmud SA, Vang KB, et al. Identification of cellular sources of IL‐2 needed for regulatory T cell development and homeostasis. J Immunol. 2018;200:3926‐3933. PubMed PMC

Kalia V, Sarkar S. Regulation of effector and memory CD8 T cell differentiation by IL‐2—A balancing act. Front Immunol. 2018;9:2987. PubMed PMC

Fontenot JD, Rasmussen JP, Gavin MA, Rudensky AY. A function for interleukin 2 in Foxp3‐expressing regulatory T cells. Nat Immunol. 2005;6:1142‐1151. PubMed

Wuest SC, Edwan JH, Martin JF, et al. A role for interleukin‐2 trans‐presentation in dendritic cell‐mediated T cell activation in humans, as revealed by daclizumab therapy. Nat Med. 2011;17:604‐609. PubMed PMC

Suzuki H, Kundig TM, Furlonger C, et al. Deregulated T cell activation and autoimmunity in mice lacking interleukin‐2 receptor beta. Science. 1995;268:1472‐1476. PubMed

Sadlack B, Lohler J, Schorle H, et al. Generalized autoimmune disease in interleukin‐2‐deficient mice is triggered by an uncontrolled activation and proliferation of CD4+ T cells. Eur J Immunol. 1995;25:3053‐3059. PubMed

Willerford DM, Chen J, Ferry JA, Davidson L, Ma A, Alt FW. Interleukin‐2 receptor alpha chain regulates the size and content of the peripheral lymphoid compartment. Immunity. 1995;3:521‐530. PubMed

Macian F. NFAT proteins: key regulators of T‐cell development and function. Nat Rev Immunol. 2005;5:472‐484. PubMed

Shin DS, Jordan A, Basu S, et al. Regulatory T cells suppress CD4+ T cells through NFAT‐dependent transcriptional mechanisms. EMBO Rep. 2014;15:991‐999. PubMed PMC

Strober W, Fuss IJ, Blumberg RS. The immunology of mucosal models of inflammation. Annu Rev Immunol. 2002;20:495‐549. PubMed

Tanoue T, Atarashi K, Honda K. Development and maintenance of intestinal regulatory T cells. Nat Rev Immunol. 2016;16:295‐309. PubMed

Laurence A, Tato CM, Davidson TS, et al. Interleukin‐2 signaling via STAT5 constrains T helper 17 cell generation. Immunity. 2007;26:371‐381. PubMed

Salio M, Gasser O, Gonzalez‐Lopez C, et al. Activation of human mucosal‐associated invariant T cells induces CD40L‐dependent maturation of monocyte‐derived and primary dendritic cells. J Immunol. 2017;199:2631‐2638. PubMed PMC

Waldmann TA. The shared and contrasting roles of IL2 and IL15 in the life and death of normal and neoplastic lymphocytes: implications for cancer therapy. Cancer Immunol Res. 2015;3:219‐227. PubMed PMC

Zelante T, Fric J, Wong AY, Ricciardi‐Castagnoli P. Interleukin‐2 production by dendritic cells and its immuno‐regulatory functions. Front Immunol. 2012;3:161. PubMed PMC

Fric J, Zelante T, Wong AY, Mertes A, Yu HB, Ricciardi‐Castagnoli P. NFAT control of innate immunity. Blood. 2012;120:1380‐1389. PubMed

Granucci F, Feau S, Angeli V, Trottein F, Ricciardi‐Castagnoli P. Early IL‐2 production by mouse dendritic cells is the result of microbial‐induced priming. J Immunol. 2003;170:5075‐5081. PubMed

Granucci F, Vizzardelli C, Pavelka N, et al. Inducible IL‐2 production by dendritic cells revealed by global gene expression analysis. Nat Immunol. 2001;2:882‐888. PubMed

Slack EC, Robinson MJ, Hernanz‐Falcon P, et al. Syk‐dependent ERK activation regulates IL‐2 and IL‐10 production by DC stimulated with zymosan. Eur J Immunol. 2007;37:1600‐1612. PubMed

Xu S, Huo J, Lee KG, Kurosaki T, Lam KP. Phospholipase Cgamma2 is critical for Dectin‐1‐mediated Ca2+ flux and cytokine production in dendritic cells. J Biol Chem. 2009;284:7038‐7046. PubMed PMC

Herbst S, Shah A, Mazon Moya M, et al. Phagocytosis‐dependent activation of a TLR9‐BTK‐calcineurin‐NFAT pathway co‐ordinates innate immunity to Aspergillus fumigatus. EMBO Mol Med. 2015;7:240‐258. PubMed PMC

Strijbis K, Tafesse FG, Fairn GD, et al. Bruton's Tyrosine Kinase (BTK) and Vav1 contribute to Dectin1‐dependent phagocytosis of Candida albicans in macrophages. PLoS Pathogens. 2013;9:e1003446. PubMed PMC

Bercusson A, Colley T, Shah A, Warris A, Armstrong‐James D. Ibrutinib blocks Btk‐dependent NF‐kB and NFAT responses in human macrophages during Aspergillus fumigatus phagocytosis. Blood. 2018;132:1985‐1988. PubMed PMC

Goodridge HS, Simmons RM, Underhill DM. Dectin‐1 stimulation by Candida albicans yeast or zymosan triggers NFAT activation in macrophages and dendritic cells. J Immunol. 2007;178:3107‐3115. PubMed

Zanoni I, Ostuni R, Capuano G, et al. CD14 regulates the dendritic cell life cycle after LPS exposure through NFAT activation. Nature. 2009;460:264‐268. PubMed

Yu HB, Yurieva M, Balachander A, et al. NFATc2 mediates epigenetic modification of dendritic cell cytokine and chemokine responses to dectin‐1 stimulation. Nucleic Acids Rese. 2015;43:836‐847. PubMed PMC

Zelante T, Wong AY, Ping TJ, et al. CD103(+) Dendritic Cells Control Th17 Cell Function in the Lung. Cell Rep. 2015;12:1789‐1801. PubMed

Seyedmousavi S, Davis MJ. Defective calcineurin/NFAT signaling in myeloid cells and susceptibility to aspergillosis in post‐transplant patients. Virulence. 2017;8:1498‐1501. PubMed PMC

Mencarelli A, Khameneh HJ, Fric J, et al. Calcineurin‐mediated IL‐2 production by CD11c(high)MHCII(+) myeloid cells is crucial for intestinal immune homeostasis. Nat Commun. 2018;9:1102. PubMed PMC

Han D, Walsh MC, Cejas PJ, et al. Dendritic cell expression of the signaling molecule TRAF6 is critical for gut microbiota‐dependent immune tolerance. Immunity. 2013;38:1211‐1222. PubMed PMC

Zhou L, Chu C, Teng F, et al. Innate lymphoid cells support regulatory T cells in the intestine through interleukin‐2. Nature. 2019;568:405‐409. PubMed PMC

Decot V, Voillard L, Latger‐Cannard V, et al. Natural‐killer cell amplification for adoptive leukemia relapse immunotherapy: comparison of three cytokines, IL‐2, IL‐15, or IL‐7 and impact on NKG2D, KIR2DL1, and KIR2DL2 expression. Exp Hematol. 2010;38:351‐362. PubMed

Reichlin A, Yokoyama WM. Natural killer cell proliferation induced by anti‐NK1.1 and IL‐2. Immunol Cell Biol. 1998;76:143‐152. PubMed

Aramburu J, Azzoni L, Rao A, Perussia B. Activation and expression of the nuclear factors of activated T cells, NFATp and NFATc, in human natural killer cells: regulation upon CD16 ligand binding. J Exp Med. 1995;182:801‐810. PubMed PMC

Fehniger TA, Cooper MA, Nuovo GJ, et al. CD56bright natural killer cells are present in human lymph nodes and are activated by T cell‐derived IL‐2: a potential new link between adaptive and innate immunity. Blood. 2003;101:3052‐3057. PubMed

Granucci F, Zanoni I, Pavelka N, et al. A contribution of mouse dendritic cell‐derived IL‐2 for NK cell activation. J Exp Med. 2004;200:287‐295. PubMed PMC

Santus W, Barresi S, Mingozzi F, et al. Skin infections are eliminated by cooperation of the fibrinolytic and innate immune systems. Sci Immunol. 2017;2. PubMed PMC

Gasteiger G, Hemmers S, Bos PD, Sun JC, Rudensky AY. IL‐2‐dependent adaptive control of NK cell homeostasis. J Exp Med. 2013;210:1179‐1187. PubMed PMC

Parrish‐Novak J, Dillon SR, Nelson A, et al. Interleukin 21 and its receptor are involved in NK cell expansion and regulation of lymphocyte function. Nature. 2000;408:57‐63. PubMed

Waldmann TA. The biology of interleukin‐2 and interleukin‐15: implications for cancer therapy and vaccine design. Nat Rev Immunol. 2006;6:595‐601. PubMed

Rosenberg SA. IL‐2: the first effective immunotherapy for human cancer. J Immunol. 2014;192:5451‐5458. PubMed PMC

Dimberg J, Shamoun L, Landerholm K, Andersson RE, Kolodziej B, Wagsater D. Genetic variants of the IL2 gene related to risk and survival in patients with colorectal cancer. Anticancer Res. 2019;39:4933‐4940. PubMed

Dhupkar P, Gordon N. Interleukin‐2: old and new approaches to enhance immune‐therapeutic efficacy. Adv Exp Med Biol. 2017;995:33‐51. PubMed

Mitra S, Ring AM, Amarnath S, et al. Interleukin‐2 activity can be fine tuned with engineered receptor signaling clamps. Immunity. 2015;42:826‐838. PubMed PMC

Lutz MB, Baur AS, Schuler‐Thurner B, Schuler G. Immunogenic and tolerogenic effects of the chimeric IL‐2‐diphtheria toxin cytocidal agent Ontak((R)) on CD25(+) cells. Oncoimmunology. 2014;3:e28223. PubMed PMC

Ohmachi K, Ando K, Ogura M, et al. E7777 in Japanese patients with relapsed/refractory peripheral and cutaneous T‐cell lymphoma: a phase I study. Cancer Sci. 2018;109:794‐802. PubMed PMC

Rafei‐Shamsabadi D, Lehr S, von Bubnoff D, Meiss F. Successful combination therapy of systemic checkpoint inhibitors and intralesional interleukin‐2 in patients with metastatic melanoma with primary therapeutic resistance to checkpoint inhibitors alone. Cancer Immunol Immunother. 2019;68:1417‐1428. PubMed PMC

Boyman O, Krieg C, Letourneau S, Webster K, Surh CD, Sprent J. Selectively expanding subsets of T cells in mice by injection of interleukin‐2/antibody complexes: implications for transplantation tolerance. Transplant Proc. 2012;44:1032‐1034. PubMed

Sun Z, Ren Z, Yang K, et al. A next‐generation tumor‐targeting IL‐2 preferentially promotes tumor‐infiltrating CD8(+) T‐cell response and effective tumor control. Nat Commun. 2019;10:3874. PubMed PMC

Muul LM, Spiess PJ, Director EP, Rosenberg SA. Identification of specific cytolytic immune responses against autologous tumor in humans bearing malignant melanoma. J Immunol. 1987;138:989‐995. PubMed

Krasnova Y, Putz EM, Smyth MJ, Souza‐Fonseca‐Guimaraes F. Bench to bedside: nK cells and control of metastasis. Clinical Immunol. 2017;177:50‐59. PubMed

Souza‐Fonseca‐Guimaraes F, Cursons J, Huntington ND. The emergence of natural killer cells as a major target in cancer immunotherapy. Trends Immunol. 2019;40:142‐158. PubMed

Parkhurst MR, Riley JP, Dudley ME, Rosenberg SA. Adoptive transfer of autologous natural killer cells leads to high levels of circulating natural killer cells but does not mediate tumor regression. Clin Cancer Res. 2011;17:6287‐6297. PubMed PMC

Ni J, Miller M, Stojanovic A, Garbi N, Cerwenka A. Sustained effector function of IL‐12/15/18‐preactivated NK cells against established tumors. J Exp Med. 2012;209:2351‐2365. PubMed PMC

Geller MA, Miller JS. Use of allogeneic NK cells for cancer immunotherapy. Immunotherapy. 2011;3:1445‐1459. PubMed PMC

Hallett WHD, Ames E, Alvarez M, et al. Combination therapy using IL‐2 and anti‐CD25 results in augmented natural killer cell‐mediated antitumor responses. Biol Blood Marrow Transplant. 2008;14:1088‐1099. PubMed PMC

Zhang J, Zheng H, Diao Y. Natural killer cells and current applications of chimeric antigen receptor‐modified NK‐92 cells in tumor immunotherapy. Int J Mol Sci. 2019;20. PubMed PMC

Chrobok M, Dahlberg CIM, Sayitoglu EC, et al. Functional assessment for clinical use of serum‐free adapted NK‐92 cells. Cancers. 2019;11. PubMed PMC

Williams BA, Wang XH, Leyton JV, et al. CD16(+)NK‐92 and anti‐CD123 monoclonal antibody prolongs survival in primary human acute myeloid leukemia xenografted mice. Haematologica. 2018;103:1720‐1729. PubMed PMC

Lowdell MW, Lamb L, Hoyle C, Velardi A, Prentice HG. Non‐MHC‐restricted cytotoxic cells: their roles in the control and treatment of leukaemias. Br J Haematol. 2001;114:11‐24. PubMed

Rubnitz JE, Inaba H, Ribeiro RC, et al. NKAML: a pilot study to determine the safety and feasibility of haploidentical natural killer cell transplantation in childhood acute myeloid leukemia. J Clin Oncol. 2010;28:955‐959. PubMed PMC

Kunzmann V, Bauer E, Feurle J, Weissinger F, Tony HP, Wilhelm M. Stimulation of gammadelta T cells by aminobisphosphonates and induction of antiplasma cell activity in multiple myeloma. Blood. 2000;96:384‐392. PubMed

Mariani S, Muraro M, Pantaleoni F, et al. Effector gammadelta T cells and tumor cells as immune targets of zoledronic acid in multiple myeloma. Leukemia. 2005;19:664‐670. PubMed

Viey E, Fromont G, Escudier B, et al. Phosphostim‐activated gamma delta T cells kill autologous metastatic renal cell carcinoma. J Immunol. 2005;174:1338‐1347. PubMed

Wilhelm M, Smetak M, Schaefer‐Eckart K, et al. Successful adoptive transfer and in vivo expansion of haploidentical gammadelta T cells. J Transl Med. 2014;12:45. PubMed PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...