Lactate from the tumor microenvironment - A key obstacle in NK cell-based immunotherapies

. 2022 ; 13 () : 932055. [epub] 20221018

Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články, přehledy, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid36330529

Recent findings about the new roles of lactate have changed our understanding of this end product of glycolysis or fermentation that was once considered only a waste product. It is now well accepted that lactate acts as a signaling molecule and fuel source for cancer cells in a glucose-restricted environment. Moreover, lactate and lactate dehydrogenase are markers of poor prognosis of many cancers and regulate many functions of immune cells. The presence of lactate in the tumor microenvironment (TME) leads to polarization of the immunosuppressive phenotypes of dendritic cells and impairs the cytotoxic abilities of T cells and NK cells, and as such lactate is a major obstacle to immune-cell effector functions and the efficacy of cell-based immunotherapies. Emerging evidence suggests that lactate in the TME might be a novel therapeutic target to enhance the immunotherapeutic potential of cell-based therapies. This review describes our current understanding of the role of lactate in tumor biology, including its detrimental effects on cell-based immunotherapy in cancer. We also highlight how the role of lactate in the TME must be considered when producing cell therapies designed for adoptive transfer and describe how targeted modulation of lactate in the TME might boost immune-cell functions and positively impact cellular immunotherapy, with a focus on NK cell.

Zobrazit více v PubMed

Brown TP, Ganapathy V. Lactate/GPR81 signaling and proton motive force in cancer: Role in angiogenesis, immune escape, nutrition, and warburg phenomenon. Pharmacol Ther (2020) 206:107451. doi: 10.1016/j.pharmthera.2019.107451 PubMed DOI

Barros LF. Metabolic signaling by lactate in the brain. Trends Neurosci (2013) 36(7):396–404. doi: 10.1016/j.tins.2013.04.002 PubMed DOI

Philp A, Macdonald AL, Watt PW. Lactate - a signal coordinating cell and systemic function. J Exp Biol (2005) 208(24):4561–75. doi: 10.1242/jeb.01961 PubMed DOI

Pérez-Tomás R, Pérez-Guillén I. Lactate in the tumor microenvironment: An essential molecule in cancer progression and treatment. Cancers (Basel) (2020) 12(11):1–29. doi: 10.3390/cancers12113244 PubMed DOI PMC

Walenta S, Schroeder T, Mueller-Klieser W. Lactate in solid malignant tumors: Potential basis of a metabolic classification in clinical oncology. Curr Med Chem (2012) 11(16):2195–204. doi: 10.2174/0929867043364711 PubMed DOI

Liberti MV, Locasale JW. The warburg effect: How does it benefit cancer cells? Trends Biochem Sci (2016) 41(3):211–8. doi: 10.1016/j.tibs.2015.12.001 PubMed DOI PMC

Shestov AA, Liu X, Ser Z, Cluntun AA, Hung YP, Huang L, et al. . Quantitative determinants of aerobic glycolysis identify flux through the enzyme GAPDH as a limiting step. Elife 3:e03342. doi: 10.7554/eLife.03342 PubMed DOI PMC

DeBerardinis RJ, Chandel NS. We need to talk about the warburg effect. Nat Metab (2020) 2(2):127–9. doi: 10.1038/s42255-020-0172-2 PubMed DOI

Vander Heiden MG, Cantley LC, Thompson CB. Understanding the warburg effect: The metabolic requirements of cell proliferation. Sci (80- ) (2009) 324(5930):1029–33. doi: 10.1007/978-3-540-29678-2_5605 PubMed DOI PMC

Warburg O, Wind F, Negelein E. I . killing-off of tumor cells in vitro. J Gen Physiol (1927) 8(6):519–30. PubMed PMC

Ma EH, Verway MJ, Johnson RM, Roy DG, Steadman M, Hayes S, et al. . Metabolic profiling using stable isotope tracing reveals distinct patterns of glucose utilization by physiologically activated CD8+ T cells. Immunity (2019) 51(5):856–870.e5. doi: 10.1016/j.immuni.2019.09.003 PubMed DOI

Jing C, Castro-Dopico T, Richoz N, Tuong ZK, Ferdinand JR, Lok LSC, et al. . Macrophage metabolic reprogramming presents a therapeutic target in lupus nephritis. Proc Natl Acad Sci U S A (2020) 117(26):15160–71. doi: 10.1073/pnas.2000943117 PubMed DOI PMC

Poznanski SM, Singh K, Ritchie TM, Aguiar JA, Fan IY, Portillo AL, et al. . Metabolic flexibility determines human NK cell functional fate in the tumor microenvironment. Cell Metab (2021) 33(6):1205–1220.e5. doi: 10.1016/j.cmet.2021.03.023 PubMed DOI

Urbańska K, Orzechowski A. Unappreciated role of LDHA and LDHB to control apoptosis and autophagy in tumor cells. Int J Mol Sci (2019) 20(9):1–15. doi: 10.3390/ijms20092085 PubMed DOI PMC

Doherty JR, Yang C, Scott KEN, Cameron MD, Fallahi M, Li W, et al. . Blocking lactate export by inhibiting the myc target MCT1 disables glycolysis and glutathione synthesis. Cancer Res (2014) 74(3):908–20. doi: 10.1158/0008-5472.CAN-13-2034 PubMed DOI PMC

Long Y, Gao Z, Hu X, Xiang F, Wu Z, Zhang J, et al. . Downregulation of MCT4 for lactate exchange promotes the cytotoxicity of NK cells in breast carcinoma. Cancer Med (2018) 7(9):4690–700. doi: 10.1002/cam4.1713 PubMed DOI PMC

Ying M, You D, Zhu X, Cai L, Zeng S, Hu X. Lactate and glutamine support NADPH generation in cancer cells under glucose deprived conditions. Redox Biol (2021) 46:102065. doi: 10.1016/j.redox.2021.102065 PubMed DOI PMC

Tao R, Zhao Y, Chu H, Wang A, Zhu J, Chen X, et al. . Genetically encoded fluorescent sensors reveal dynamic regulation of NADPH metabolism. Nat Methods (2017) 14(7):720–8. doi: 10.1038/nmeth.4306 PubMed DOI PMC

Fan J, Ye J, Kamphorst JJ, Shlomi T, Thompson CB, Rabinowitz JD. Quantitative flux analysis reveals folate-dependent NADPH production. Nature (2014) 510(7504):298–302. doi: 10.1038/nature13236 PubMed DOI PMC

Hortová-Kohoutková M, Lázničková P, Frič J. How immune-cell fate and function are determined by metabolic pathway choice: The bioenergetics underlying the immune response. BioEssays (2021) 43(2):1–15. doi: 10.1002/bies.202000067 PubMed DOI

Brand A, Singer K, Koehl GE, Kolitzus M, Schoenhammer G, Thiel A, et al. . LDHA-associated lactic acid production blunts tumor immunosurveillance by T and NK cells. Cell Metab (2016) 24(5):657–71. doi: 10.1016/j.cmet.2016.08.011 PubMed DOI

Autore F, Strati P, Innocenti I, Corrente F, Trentin L, Cortelezzi A, et al. . Elevated lactate dehydrogenase has prognostic relevance in treatment-naïve patients affected by chronic lymphocytic leukemia with trisomy 12. Cancers (Basel) (2019) 11(7):1–12. doi: 10.3390/cancers11070896 PubMed DOI PMC

Elbossaty WFM. Lactate dehydrogenase (LDH) as prognostic marker in acute leukemia quantitative method. J Blood Disord Transfus (2017) 08(01):1–7. doi: 10.4172/2155-9864.1000375 DOI

Hafiz G, Mannan MA. Serum lactate dehydrogenase level in childhood acute lymphoblastic leukemia. Bangladesh Med Res Counc Bull (2007) 33(3):88–91. doi: 10.3329/bmrcb.v33i3.1139 PubMed DOI

Yu H, Yin Y, Yi Y, Cheng Z, Kuang W, Li R, et al. . Targeting lactate dehydrogenase a (LDHA) exerts antileukemic effects on T-cell acute lymphoblastic leukemia. Cancer Commun (2020) 40(10):501–17. doi: 10.1002/cac2.12080 PubMed DOI PMC

Kalaycio M, Rybicki L, Pohlman B, Dean R, Sweetenham J, Andresen S, et al. . Elevated lactate dehydrogenase is an adverse predictor of outcome in HLA-matched sibling bone marrow transplant for acute myelogenous leukemia. Bone Marrow Transplant (2007) 40(8):753–8. doi: 10.1038/sj.bmt.1705811 PubMed DOI

Brault C, Zerbib Y, Delette C, Marc J, Gruson B, Marolleau JP, et al. . The warburg effect as a type b lactic acidosis in a patient with acute myeloid leukemia: A diagnostic challenge for clinicians. Front Oncol. (2018) 8:232. doi: 10.3389/fonc.2018.00232 PubMed DOI PMC

Chen Y, Feng Z, Kuang X, Zhao P, Chen B, Fang Q. Increased lactate in AML blasts upregulates TOX expression. leading to exhaustion CD8 + cytolytic T Cells (2021) 11(11):5726–42. PubMed PMC

Geva M, Shouval R, Fein JA, Yerushalmi R, Shimoni A, Nagler A, et al. . The prognostic role of pretransplant serum lactate dehydrogenase levels in acute myeloid leukemia and lymphoma patients undergoing allogenic hematopoietic stem cell transplantation. Biol Blood Marrow Transplant (2020) 26(3):S111–2. doi: 10.1016/j.bbmt.2019.12.620 DOI

Silvano A, Menegazzi G, Peppicelli S, Mancini C, Biagioni A, Tubita A, et al. . Lactate maintainsBCR/Abl expression and signalinginChronic myeloid leukemia cells under nutrient restriction. Oncol Res Featur Preclin Clin Cancer Ther. (2022) 29(1):33–46 doi: 10.3727/096504022x16442289212164 PubMed DOI PMC

Noe JT, Rendon BE, Geller AE, Conroy LR, Morrissey SM, Young LEA, et al. . Lactate supports a metabolic-epigenetic link in macrophage polarization. Sci Adv (2021) 7(46):1–13. doi: 10.1126/sciadv.abi8602 PubMed DOI PMC

Marin E, Bouchet-Delbos L, Renoult O, Louvet C, Nerriere-Daguin V, Managh AJ, et al. . Human tolerogenic dendritic cells regulate immune responses through lactate synthesis. Cell Metab (2019) 30(6):1075–1090.e8. doi: 10.1016/j.cmet.2019.11.011 PubMed DOI

Comito G, Iscaro A, Bacci M, Morandi A, Ippolito L, Parri M, et al. . Lactate modulates CD4 + T-cell polarization and induces an immunosuppressive environment, which sustains prostate carcinoma progression via TLR8/miR21 axis. Oncogene (2019) 38(19):3681–95. doi: 10.1038/s41388-019-0688-7 PubMed DOI

Harmon C, Robinson MW, Hand F, Almuaili D, Mentor K, Houlihan DD, et al. . Lactate-mediated acidification of tumor microenvironment induces apoptosis of liver-resident NK cells in colorectal liver metastasis. Cancer Immunol Res (2019) 7(2):335–46. doi: 10.1158/2326-6066.CIR-18-0481 PubMed DOI

Haas R, Smith J, Rocher-Ros V, Nadkarni S, Montero-Melendez T, D'Acquisto F, et al. . Lactate regulates metabolic and proinflammatory circuits in control of T cell migration and effector functions. PloS Biol (2015) 13(7):1–24. doi: 10.1371/journal.pbio.1002202 PubMed DOI PMC

Feichtinger RG, Lang R. Targeting l-lactate metabolism to overcome resistance to immune therapy of melanoma and other tumor entities. J Oncol (2019) 2019:1–12. doi: 10.1155/2019/2084195 PubMed DOI PMC

Husain Z, Huang Y, Seth P, Sukhatme VP. Tumor-derived lactate modifies antitumor immune response: Effect on myeloid-derived suppressor cells and NK cells. J Immunol (2013) 191(3):1486–95. doi: 10.4049/jimmunol.1202702 PubMed DOI

Angelin A, Gil-de-Gómez L, Dahiya S, Jiao J, Guo L, Levine MH, et al. . Foxp3 reprograms T cell metabolism to function in low-glucose, high-lactate environments. Cell Metab (2017) 25(6):1282–1293.e7. doi: 10.1016/j.cmet.2016.12.018 PubMed DOI PMC

Caslin HL, Abebayehu D, Pinette JA, Ryan JJ. Lactate is a metabolic mediator that shapes immune cell fate and function. Front Physiol (2021) 12:688485. doi: 10.3389/fphys.2021.688485 PubMed DOI PMC

Watson MLJ, Vignali PDA, Mullett SJ, Overacre-Delgoffe AE, Peralta RM, Grebinoski S, et al. . Metabolic support of tumour-infiltrating regulatory T cells by lactic acid. Nature (2021) 591(7851):645–51. doi: 10.1038/s41586-020-03045-2 PubMed DOI PMC

Mendler AN, Hu B, Prinz PU, Kreutz M, Gottfried E, Noessner E. Tumor lactic acidosis suppresses CTL function by inhibition of p38 and JNK/c-jun activation. Int J Cancer (2012) 131(3):633–40. doi: 10.1002/ijc.26410 PubMed DOI

Wang ZH, Peng WB, Zhang P, Yang XP, Zhou Q. Lactate in the tumour microenvironment: From immune modulation to therapy. EBioMedicine (2021) 73:103627. doi: 10.1016/j.ebiom.2021.103627 PubMed DOI PMC

Fischer K, Hoffmann P, Voelkl S, Meidenbauer N, Ammer J, Edinger M, et al. . Inhibitory effect of tumor cell-derived lactic acid on human T cells. Blood (2007) 109(9):3812–9. doi: 10.1182/blood-2006-07-035972 PubMed DOI

Ippolito L, Morandi A, Giannoni E, Chiarugi P. Lactate: A metabolic driver in the tumour landscape. Trends Biochem Sci (2019) 44(2):153–66. doi: 10.1016/j.tibs.2018.10.011 PubMed DOI

Certo M, Tsai CH, Pucino V, Ho PC, Mauro C. Lactate modulation of immune responses in inflammatory versus tumour microenvironments. Nat Rev Immunol (2021) 21(3):151–61. doi: 10.1038/s41577-020-0406-2 PubMed DOI

Gottfried E, Kunz-Schughart LA, Ebner S, Mueller-Klieser W, Hoves S, Andreesen R, et al. . Tumor-derived lactic acid modulates dendritic cell activation and antigen expression. Blood (2006) 107(5):2013–21. doi: 10.1182/blood-2005-05-1795 PubMed DOI

Zhang D, Tang Z, Huang H, Zhou G, Cui Ch, Weng Y, et al. . Metabolic regulation of gene expression by histone lactylation. Nature (2019) 574(7779):575–80. doi: 10.1038/s41586-019-1678-1 PubMed DOI PMC

Chen P, Zuo H, Xiong H, Kolar MJ, Chu Q, Saghatelian A, et al. . Gpr132 sensing of lactate mediates tumor-macrophage interplay to promote breast cancer metastasis. Proc Natl Acad Sci U S A (2017) 114(3):580–5. doi: 10.1073/pnas.1614035114 PubMed DOI PMC

Brown TP, Bhattacharjee P, Ramachandran S, Sivaprakasam S, Ristic B, Sikder MOF, et al. . The lactate receptor GPR81 promotes breast cancer growth via a paracrine mechanism involving antigen-presenting cells in the tumor microenvironment. Oncogene (2020) 39(16):3292–304. doi: 10.1038/s41388-020-1216-5 PubMed DOI

Abebayehu D, Spence AJ, Caslin H, Taruselli M, Haque TT, Kiwanuka KN, et al. . Lactic acid suppresses IgE-mediated mast cell function in vitro and in vivo . Cell Immunol (2019) 341:103918. doi: 10.1016/j.cellimm.2019.04.006 PubMed DOI PMC

Awasthi D, Nagarkoti S, Sadaf S, Chandra T, Kumar S, Dikshit M. Glycolysis dependent lactate formation in neutrophils: A metabolic link between NOX-dependent and independent NETosis. Biochim Biophys Acta - Mol Basis Dis (2019) 1865(12):165542. doi: 10.1016/j.bbadis.2019.165542 PubMed DOI

Brizel DM, Schroeder T, Scher RL, Walenta S, Clough RW, Dewhirst MW, et al. . Elevated tumor lactate concentrations predict for an increased risk of metastases in head-and-neck cancer. Int J Radiat Oncol Biol Phys (2001) 51(2):349–53. doi: 10.1016/S0360-3016(01)01630-3 PubMed DOI

Fric J, Zelante T, Wong AYW, Mertes A, Yu HB, Ricciardi-Castagnoli P. NFAT control of innate immunity. Blood (2012) 120(7):1380–9. doi: 10.1182/blood-2012-02-404475 PubMed DOI

Bendickova K, Tidu F, Fric J. Calcineurin– NFAT signalling in myeloid leucocytes: new prospects and pitfalls in immunosuppressive therapy. EMBO Mol Med (2017) 9(8):990–9. doi: 10.15252/emmm.201707698 PubMed DOI PMC

Fendt S-M, Bell EL, Keibler MA, Olenchock BA, Mayers JR, et al. . Reductive glutamine metabolism is a function of the αketoglutarate to citrate ratio in cells. Nat Commun (2013) 4:1–21. doi: 10.1038/ncomms3236 PubMed DOI PMC

Gellerich FN, Gizatullina Z, Trumbeckaite S, Nguyen HP, Pallas T, Arandarcikaite O, et al. . The regulation of OXPHOS by extramitochondrial calcium. Biochim Biophys Acta - Bioenerg (2010) 1797(6-7):1018–27. doi: 10.1016/j.bbabio.2010.02.005 PubMed DOI

Husain Z, Seth P, Sukhatme VP. Tumor-derived lactate and myeloid-derived suppressor cells: Linking metabolism to cancer immunology. Oncoimmunology (2013) 2(11):9–12. doi: 10.4161/onci.26383 PubMed DOI PMC

Sheppard S, Santosa EK, Lau CM, Violante S, Giovanelli P, Kim H, et al. . Lactate dehydrogenase a-dependent aerobic glycolysis promotes natural killer cell anti-viral and anti-tumor function. Cell Rep (2021) 35(9):1–17. doi: 10.1016/j.celrep.2021.109210 PubMed DOI PMC

Rao Y, Gammon ST, Sutton MN, Zacharias NM, Bhattacharya P, Piwnica-Worms D. Excess exogenous pyruvate inhibits lactate dehydrogenase activity in live cells in an MCT1-dependent manner. J Biol Chem (2021) 297(1):100775. doi: 10.1016/j.jbc.2021.100775 PubMed DOI PMC

Daneshmandi S, Wegiel B. Blockade of lactate dehydrogenase-a ( LDH-a ) improves e ffi cacy of anti-programmed cell death-1. Cancers (Basel) (2019) 11(4):450. doi: 10.3390/cancers11040450 PubMed DOI PMC

Pötzl J, Roser D, Bankel L, Hömberg N, Geishauser A, Brenner CD, et al. . Reversal of tumor acidosis by systemic buffering reactivates NK cells to express IFN-γ and induces NK cell-dependent lymphoma control without other immunotherapies. Int J Cancer (2017) 140(9):2125–33. doi: 10.1002/ijc.30646 PubMed DOI

Saulle E, Spinello I, Quaranta MT, Pasquini L, Pelosi E, Iorio E, et al. . Targeting lactate metabolism by inhibiting MCT1 or MCT4 impairs leukemic cell proliferation, induces two different related death-pathways and increases chemotherapeutic sensitivity of acute myeloid leukemia cells. Front Oncol (2021) 10:621458. doi: 10.3389/fonc.2020.621458 PubMed DOI PMC

He R, Zang J, Zhao Y, Liu Y, Ruan S, Zheng X, et al. . Nanofactory for metabolic and chemodynamic therapy: pro-tumor lactate trapping and anti-tumor ROS transition. J Nanobiotechnology (2021) 19(1):1–14. doi: 10.1186/s12951-021-01169-9 PubMed DOI PMC

Elia I, Haigis MC. Metabolites and the tumour microenvironment: from cellular mechanisms to systemic metabolism. Nat Metab (2021) 3(1):21–32. doi: 10.1038/s42255-020-00317-z PubMed DOI PMC

Colegio OR, Chu NQ, Szabo AL, Chu T, Rhenberg AM, Jairam V, et al. . Functional polarization of tumour-associated macrophages by tumour-derived lactic acid. Nature (2014) 513(7519):559–63. doi: 10.1038/nature13490 PubMed DOI PMC

Rogatzki MJ, Ferguson BS, Goodwin ML, Gladden LB. Lactate is always the end product of glycolysis. Front Neurosci (2015) 9:22. doi: 10.3389/fnins.2015.00022 PubMed DOI PMC

Wu H, Estrella V, Beatty M, Abrahams D, El-Kenawi A, Russell S, et al. . T-Cells produce acidic niches in lymph nodes to suppress their own effector functions. Nat Commun (2020) 11(1):1–13. doi: 10.1038/s41467-020-17756-7 PubMed DOI PMC

Bendickova K, Fric J. Roles of IL-2 in bridging adaptive and innate immunity, and as a tool for cellular immunotherapy. J Leukoc Biol (2020) 108(1):427–37. doi: 10.1002/JLB.5MIR0420-055R PubMed DOI PMC

Wang H, Grzywacz B, Sukovich D, McCullar V, Cao Q, Lee AB, et al. . The unexpected effect of cyclosporin a on CD56+CD16- and CD56+CD16+ natural killer cell subpopulations. Blood (2007) 110(5):1530–9. doi: 10.1182/blood-2006-10-048173 PubMed DOI PMC

Prager I, Watzl C. Mechanisms of natural killer cell-mediated cellular cytotoxicity. J Leukoc Biol (2019) 105(6):1319–29. doi: 10.1002/JLB.MR0718-269R PubMed DOI

Orange JS. Formation and function of the lytic NK-cell immunological synapse. Nat Rev Immunol (2008) 8(9):713–25. doi: 10.1038/nri2381 PubMed DOI PMC

Ochoa MC, Minute L, Rodriguez I, Garasa S, Perez-Ruiz E, Inogés S, et al. . Antibody-dependent cell cytotoxicity: Immunotherapy strategies enhancing effector NK cells. Immunol Cell Biol (2017) 95(4):347–55. doi: 10.1038/icb.2017.6 PubMed DOI

O’Brien KL, Finlay DK. Immunometabolism and natural killer cell responses. Nat Rev Immunol (2019) 19(5):282–90. doi: 10.1038/s41577-019-0139-2 PubMed DOI

Zemanova M, Cernovska M, Havel L, Bartek T, Lukesova S, Jakesova J, et al. . Autologous dendritic cell-based immunotherapy (DCVAC/LuCa) and carboplatin/paclitaxel in advanced non-small cell lung cancer: A randomized, open-label, phase I/II trial. Cancer Treat Res Commun (2021) 28:100427. doi: 10.1016/j.ctarc.2021.100427 PubMed DOI

Bloy N, Pol J, Aranda F, Eggermont A, Cremer I, Fridman WH, et al. . Trial watch: Dendritic cell-based anticancer therapy. Oncoimmunology (2014) 3(11):e963424–1-e963424-16. doi: 10.4161/21624011.2014.963424 PubMed DOI PMC

Sterner RC, Sterner RM. CAR-T cell therapy: current limitations and potential strategies. Blood Cancer J (2021) 11(4):1–11. doi: 10.1038/s41408-021-00459-7 PubMed DOI PMC

Esensten JH, Muller YD, Bluestone JA, Tang Q. Regulatory T-cell therapy for autoimmune and autoinflammatory diseases: The next frontier. J Allergy Clin Immunol (2018) 142(6):1710–8. doi: 10.1016/j.jaci.2018.10.015 PubMed DOI

Rad F, Ghorbani M, Mohammadi Roushandeh A, Habibi Roudkenar M. Mesenchymal stem cell-based therapy for autoimmune diseases: emerging roles of extracellular vesicles. Mol Biol Rep (2019) 46(1):1533–49. doi: 10.1007/s11033-019-04588-y PubMed DOI

Marofi F, Abdul-Rasheed OF, Rahman HS, Budi HS, Jalil AT, Yumashev AV, et al. . CAR-NK cell in cancer immunotherapy; a promising frontier. Cancer Sci (2021) 112(9):3427–36. doi: 10.1111/cas.14993 PubMed DOI PMC

Wang X, Rivière I. Clinical manufacturing of CAR T cells: Foundation of a promising therapy. Mol Ther - Oncolytics (2016) 3:16015. doi: 10.1038/mto.2016.15 PubMed DOI PMC

Ciurea SO, Kongtim P, Soebbing D, Trikha P, Behbehani G, Rondon G, et al. . Decrease post-transplant relapse using donor-derived expanded NK-cells. Leukemia (2021) 36(1):155–64. doi: 10.1038/s41375-021-01349-4 PubMed DOI PMC

Ruggeri L, Vago L, Eikema DJ, de Wreede LC, Ciceri F, Diaz MA, et al. . Natural killer cell alloreactivity in HLA-haploidentical hematopoietic transplantation: a study on behalf of the CTIWP of the EBMT. Bone Marrow Transplant (2021) 56(8):1900–7. doi: 10.1038/s41409-021-01259-0 PubMed DOI

Myers JA, Miller JS. Exploring the NK cell platform for cancer immunotherapy. Nat Rev Clin Oncol (2021) 18(2):85–100. doi: 10.1038/s41571-020-0426-7 PubMed DOI PMC

Burns LJ, Weisdorf DJ, DeFor TE, Vesole DH, Repka TL, Blazar BR, et al. . IL-2-based immunotherapy after authologous transplantation for lymphoma and breast cancer induces immune activation and cytokine release: A phase I/II trial. Bone Marrow Transplant (2003) 32(2):177–86. doi: 10.1038/sj.bmt.1704086 PubMed DOI

Mac Cheever MA. Twelve immunotherapy drugs that could cure cancers. Immunol Rev (2008) 222(1):357–68. doi: 10.1111/j.1600-065X.2008.00604.x PubMed DOI

Terrén I, Orrantia A, Mosteiro A, Vitallé J, Zenarruzabeitia O, Borrego F. Metabolic changes of interleukin-12/15/18-stimulated human NK cells. Sci Rep (2021) 11(1). doi: 10.1038/s41598-021-85960-6 PubMed DOI PMC

Albinger N, Hartmann J, Ullrich E. Current status and perspective of CAR-T and CAR-NK cell therapy trials in Germany. Gene Ther (2021) 28(9):513–27. doi: 10.1038/s41434-021-00246-w PubMed DOI PMC

Daher M, Melo Garcia L, Li Y, Rezvani K. CAR-NK cells: the next wave of cellular therapy for cancer. Clin Transl Immunol (2021) 10(4):1–16. doi: 10.1002/cti2.1274 PubMed DOI PMC

Vallera DA, Felices M, McElmurry R, McCullar V, Zhou X, Schmohl U, et al. . IL15 trispecific killer engagers (TriKE) make natural killer cells specific to CD33+ targets while also inducing persistence, in vivo expansion, and enhanced function. Clin Cancer Res (2016) 22(14):3440–50. doi: 10.1158/1078-0432.CCR-15-2710 PubMed DOI PMC

Reusing SB, Vallera DA, Manser AR, Vatrin T, Bhatia S, Felices M, et al. . CD16xCD33 bispecific killer cell engager (BiKE) as potential immunotherapeutic in pediatric patients with AML and biphenotypic ALL. Cancer Immunol Immunother (2021) 70(12):3701–8. doi: 10.1007/s00262-021-03008-0 PubMed DOI PMC

Demaria O, Gauthier L, Debroas G, Vivier E. Natural killer cell engagers in cancer immunotherapy: Next generation of immuno-oncology treatments. Eur J Immunol (2021) 51(8):1934–42. doi: 10.1002/eji.202048953 PubMed DOI

Kaymak I, Williams KS, Cantor JR, Jones RG. Immunometabolic interplay in the tumor microenvironment. Cancer Cell (2021) 39(1):28–37. doi: 10.1016/j.ccell.2020.09.004 PubMed DOI PMC

Bader JE, Voss K, Rathmell JC. Targeting metabolism to improve the tumor microenvironment for cancer immunotherapy. Mol Cell (2020) 78(6):1019–33. doi: 10.1016/j.molcel.2020.05.034 PubMed DOI PMC

Witney TH, James ML, Shen B, Chang E, Pohling C, Arksey N, et al. . PET imaging of tumor glycolysis downstream of hexokinase through noninvasive measurement of pyruvate kinase M2. Sci Transl Med (2015) 7(310):1–9. doi: 10.1126/scitranslmed.aac6117 PubMed DOI

Deng H, Kan A, Lyu N, He M, Huang X, Qiao S, et al. . Tumor-derived lactate inhibit the efficacy of lenvatinib through regulating PD-L1 expression on neutrophil in hepatocellular carcinoma. J Immunother Cancer (2021) 9(6):1–14. doi: 10.1136/jitc-2020-002305 PubMed DOI PMC

Liu S, Galat V, Galat Y, Lee YKA, Wainwright D, Wu J. NK cell-based cancer immunotherapy: from basic biology to clinical development. J Hematol Oncol (2021) 14(1):1–24. doi: 10.1186/s13045-020-01014-w PubMed DOI PMC

Tarazona R, Lopez-Sejas N, Guerrero B, Hassouneh F, Valhondo I, Pera A, et al. . Current progress in NK cell biology and NK cell-based cancer immunotherapy. Cancer Immunol Immunother (2020) 69(5):879–99. doi: 10.1007/s00262-020-02532-9 PubMed DOI PMC

Becker PSA, Suck G, Nowakowska P, Ullrich E, Seifried E, Bader P, et al. . Selection and expansion of natural killer cells for NK cell-based immunotherapy. Cancer Immunol Immunother (2016) 65(4):477–84. doi: 10.1007/s00262-016-1792-y PubMed DOI PMC

Zhang M, Jin X, Sun R, Xiong X, Wang J, Xie D, et al. . Optimization of metabolism to improve efficacy during CAR-T cell manufacturing. J Transl Med (2021) 19(1):1–11. doi: 10.1186/s12967-021-03165-x PubMed DOI PMC

Terrén I, Orrantia A, Vitallé J, Zenarruzabeitia O, Borrego F. NK cell metabolism and tumor microenvironment. Front Immunol (2019) 10:2278. doi: 10.3389/fimmu.2019.02278 PubMed DOI PMC

Habif G, Crinier A, André P, Vivier E, Narni-Mancinelli E. Targeting natural killer cells in solid tumors. Cell Mol Immunol (2019) 16(5):415–22. doi: 10.1038/s41423-019-0224-2 PubMed DOI PMC

Nersesian S, Schwartz SL, Grantham SR, MacLean LK, Lee SN, Pugh-Toole M, et al. . NK cell infiltration is associated with improved overall survival in solid cancers: A systematic review and meta-analysis. Transl Oncol (2021) 14(1):100930. doi: 10.1016/j.tranon.2020.100930 PubMed DOI PMC

Locatelli F, Pende D, Falco M, Della Chiesa M, Moretta A, Moretta L. NK cells mediate a crucial graft-versus-Leukemia effect in haploidentical-HSCT to cure high-risk acute leukemia. Trends Immunol (2018) 39(7):577–90. doi: 10.1016/j.it.2018.04.009 PubMed DOI

Lee J, Kang TH, Yoo W, Choi H, Jo S, Kong K, et al. . An antibody designed to improve adoptive NK-cell therapy inhibits pancreatic cancer progression in a murine model. Cancer Immunol Res (2019) 7(2):219–29. doi: 10.1158/2326-6066.CIR-18-0317 PubMed DOI

Guo H, Chang YJ, Hong Y, Xu LP, Wang Y, Zhang XH, et al. . Dynamic immune profiling identifies the stronger graft-versus-leukemia (GVL) effects with haploidentical allografts compared to HLA-matched stem cell transplantation. Cell Mol Immunol (2021) 18(5):1172–85. doi: 10.1038/s41423-020-00597-1 PubMed DOI PMC

Valent P, Sadovnik I, Eisenwort G, Bauer K, Herrmann H, Gleixner KV, et al. . Immunotherapy-based targeting and elimination of leukemic stem cells in AML and CML. Int J Mol Sci (2019) 20(17). doi: 10.3390/ijms20174233 PubMed DOI PMC

Ng YY, Du Z, Zhang X, Chng WJ, Wang S. CXCR4 and anti-BCMA CAR co-modified natural killer cells suppress multiple myeloma progression in a xenograft mouse model. Cancer Gene Ther (2022) 29(5):475–83. doi: 10.1038/s41417-021-00365-x PubMed DOI

Slattery K, Woods E, Zaiatz-Bittencourt V, Marks S, Chew S, Conroy M, et al. . TGFβ drives NK cell metabolic dysfunction in human metastatic breast cancer. J Immunother Cancer (2021) 9(2):1–13. doi: 10.1136/jitc-2020-002044 PubMed DOI PMC

Batlle E, Massagué J. Transforming growth factor-β signaling in immunity and cancer. Immunity (2019) 50(4):924–40. doi: 10.1016/j.immuni.2019.03.024 PubMed DOI PMC

Thomas S, Rouilly V, Patin E, Alanio C, Dubois A, Delval C, et al. . The milieu intérieur study - an integrative approach for study of human immunological variance. Clin Immunol (2015) 157(2):277–93. doi: 10.1016/j.clim.2014.12.004 PubMed DOI

Terrén I, Orrantia A, Vitallé J, Astarloa-Pando G, Zenarruzabeitia O, Borrego F. Modulating NK cell metabolism for cancer immunotherapy. Semin Hematol (2020) 57(4):213–24. doi: 10.1053/j.seminhematol.2020.10.003 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...