Lactate from the tumor microenvironment - A key obstacle in NK cell-based immunotherapies
Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články, přehledy, práce podpořená grantem
PubMed
36330529
PubMed Central
PMC9623302
DOI
10.3389/fimmu.2022.932055
Knihovny.cz E-zdroje
- Klíčová slova
- NK cell, T cell, cytotoxicity, immunometabolism, immunosuppression,, immunotherapy, lactate,
- MeSH
- buňky NK MeSH
- imunoterapie MeSH
- kyselina mléčná MeSH
- lidé MeSH
- nádorové mikroprostředí * MeSH
- nádory * terapie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- kyselina mléčná MeSH
Recent findings about the new roles of lactate have changed our understanding of this end product of glycolysis or fermentation that was once considered only a waste product. It is now well accepted that lactate acts as a signaling molecule and fuel source for cancer cells in a glucose-restricted environment. Moreover, lactate and lactate dehydrogenase are markers of poor prognosis of many cancers and regulate many functions of immune cells. The presence of lactate in the tumor microenvironment (TME) leads to polarization of the immunosuppressive phenotypes of dendritic cells and impairs the cytotoxic abilities of T cells and NK cells, and as such lactate is a major obstacle to immune-cell effector functions and the efficacy of cell-based immunotherapies. Emerging evidence suggests that lactate in the TME might be a novel therapeutic target to enhance the immunotherapeutic potential of cell-based therapies. This review describes our current understanding of the role of lactate in tumor biology, including its detrimental effects on cell-based immunotherapy in cancer. We also highlight how the role of lactate in the TME must be considered when producing cell therapies designed for adoptive transfer and describe how targeted modulation of lactate in the TME might boost immune-cell functions and positively impact cellular immunotherapy, with a focus on NK cell.
Zobrazit více v PubMed
Brown TP, Ganapathy V. Lactate/GPR81 signaling and proton motive force in cancer: Role in angiogenesis, immune escape, nutrition, and warburg phenomenon. Pharmacol Ther (2020) 206:107451. doi: 10.1016/j.pharmthera.2019.107451 PubMed DOI
Barros LF. Metabolic signaling by lactate in the brain. Trends Neurosci (2013) 36(7):396–404. doi: 10.1016/j.tins.2013.04.002 PubMed DOI
Philp A, Macdonald AL, Watt PW. Lactate - a signal coordinating cell and systemic function. J Exp Biol (2005) 208(24):4561–75. doi: 10.1242/jeb.01961 PubMed DOI
Pérez-Tomás R, Pérez-Guillén I. Lactate in the tumor microenvironment: An essential molecule in cancer progression and treatment. Cancers (Basel) (2020) 12(11):1–29. doi: 10.3390/cancers12113244 PubMed DOI PMC
Walenta S, Schroeder T, Mueller-Klieser W. Lactate in solid malignant tumors: Potential basis of a metabolic classification in clinical oncology. Curr Med Chem (2012) 11(16):2195–204. doi: 10.2174/0929867043364711 PubMed DOI
Liberti MV, Locasale JW. The warburg effect: How does it benefit cancer cells? Trends Biochem Sci (2016) 41(3):211–8. doi: 10.1016/j.tibs.2015.12.001 PubMed DOI PMC
Shestov AA, Liu X, Ser Z, Cluntun AA, Hung YP, Huang L, et al. . Quantitative determinants of aerobic glycolysis identify flux through the enzyme GAPDH as a limiting step. Elife 3:e03342. doi: 10.7554/eLife.03342 PubMed DOI PMC
DeBerardinis RJ, Chandel NS. We need to talk about the warburg effect. Nat Metab (2020) 2(2):127–9. doi: 10.1038/s42255-020-0172-2 PubMed DOI
Vander Heiden MG, Cantley LC, Thompson CB. Understanding the warburg effect: The metabolic requirements of cell proliferation. Sci (80- ) (2009) 324(5930):1029–33. doi: 10.1007/978-3-540-29678-2_5605 PubMed DOI PMC
Warburg O, Wind F, Negelein E. I . killing-off of tumor cells in vitro. J Gen Physiol (1927) 8(6):519–30. PubMed PMC
Ma EH, Verway MJ, Johnson RM, Roy DG, Steadman M, Hayes S, et al. . Metabolic profiling using stable isotope tracing reveals distinct patterns of glucose utilization by physiologically activated CD8+ T cells. Immunity (2019) 51(5):856–870.e5. doi: 10.1016/j.immuni.2019.09.003 PubMed DOI
Jing C, Castro-Dopico T, Richoz N, Tuong ZK, Ferdinand JR, Lok LSC, et al. . Macrophage metabolic reprogramming presents a therapeutic target in lupus nephritis. Proc Natl Acad Sci U S A (2020) 117(26):15160–71. doi: 10.1073/pnas.2000943117 PubMed DOI PMC
Poznanski SM, Singh K, Ritchie TM, Aguiar JA, Fan IY, Portillo AL, et al. . Metabolic flexibility determines human NK cell functional fate in the tumor microenvironment. Cell Metab (2021) 33(6):1205–1220.e5. doi: 10.1016/j.cmet.2021.03.023 PubMed DOI
Urbańska K, Orzechowski A. Unappreciated role of LDHA and LDHB to control apoptosis and autophagy in tumor cells. Int J Mol Sci (2019) 20(9):1–15. doi: 10.3390/ijms20092085 PubMed DOI PMC
Doherty JR, Yang C, Scott KEN, Cameron MD, Fallahi M, Li W, et al. . Blocking lactate export by inhibiting the myc target MCT1 disables glycolysis and glutathione synthesis. Cancer Res (2014) 74(3):908–20. doi: 10.1158/0008-5472.CAN-13-2034 PubMed DOI PMC
Long Y, Gao Z, Hu X, Xiang F, Wu Z, Zhang J, et al. . Downregulation of MCT4 for lactate exchange promotes the cytotoxicity of NK cells in breast carcinoma. Cancer Med (2018) 7(9):4690–700. doi: 10.1002/cam4.1713 PubMed DOI PMC
Ying M, You D, Zhu X, Cai L, Zeng S, Hu X. Lactate and glutamine support NADPH generation in cancer cells under glucose deprived conditions. Redox Biol (2021) 46:102065. doi: 10.1016/j.redox.2021.102065 PubMed DOI PMC
Tao R, Zhao Y, Chu H, Wang A, Zhu J, Chen X, et al. . Genetically encoded fluorescent sensors reveal dynamic regulation of NADPH metabolism. Nat Methods (2017) 14(7):720–8. doi: 10.1038/nmeth.4306 PubMed DOI PMC
Fan J, Ye J, Kamphorst JJ, Shlomi T, Thompson CB, Rabinowitz JD. Quantitative flux analysis reveals folate-dependent NADPH production. Nature (2014) 510(7504):298–302. doi: 10.1038/nature13236 PubMed DOI PMC
Hortová-Kohoutková M, Lázničková P, Frič J. How immune-cell fate and function are determined by metabolic pathway choice: The bioenergetics underlying the immune response. BioEssays (2021) 43(2):1–15. doi: 10.1002/bies.202000067 PubMed DOI
Brand A, Singer K, Koehl GE, Kolitzus M, Schoenhammer G, Thiel A, et al. . LDHA-associated lactic acid production blunts tumor immunosurveillance by T and NK cells. Cell Metab (2016) 24(5):657–71. doi: 10.1016/j.cmet.2016.08.011 PubMed DOI
Autore F, Strati P, Innocenti I, Corrente F, Trentin L, Cortelezzi A, et al. . Elevated lactate dehydrogenase has prognostic relevance in treatment-naïve patients affected by chronic lymphocytic leukemia with trisomy 12. Cancers (Basel) (2019) 11(7):1–12. doi: 10.3390/cancers11070896 PubMed DOI PMC
Elbossaty WFM. Lactate dehydrogenase (LDH) as prognostic marker in acute leukemia quantitative method. J Blood Disord Transfus (2017) 08(01):1–7. doi: 10.4172/2155-9864.1000375 DOI
Hafiz G, Mannan MA. Serum lactate dehydrogenase level in childhood acute lymphoblastic leukemia. Bangladesh Med Res Counc Bull (2007) 33(3):88–91. doi: 10.3329/bmrcb.v33i3.1139 PubMed DOI
Yu H, Yin Y, Yi Y, Cheng Z, Kuang W, Li R, et al. . Targeting lactate dehydrogenase a (LDHA) exerts antileukemic effects on T-cell acute lymphoblastic leukemia. Cancer Commun (2020) 40(10):501–17. doi: 10.1002/cac2.12080 PubMed DOI PMC
Kalaycio M, Rybicki L, Pohlman B, Dean R, Sweetenham J, Andresen S, et al. . Elevated lactate dehydrogenase is an adverse predictor of outcome in HLA-matched sibling bone marrow transplant for acute myelogenous leukemia. Bone Marrow Transplant (2007) 40(8):753–8. doi: 10.1038/sj.bmt.1705811 PubMed DOI
Brault C, Zerbib Y, Delette C, Marc J, Gruson B, Marolleau JP, et al. . The warburg effect as a type b lactic acidosis in a patient with acute myeloid leukemia: A diagnostic challenge for clinicians. Front Oncol. (2018) 8:232. doi: 10.3389/fonc.2018.00232 PubMed DOI PMC
Chen Y, Feng Z, Kuang X, Zhao P, Chen B, Fang Q. Increased lactate in AML blasts upregulates TOX expression. leading to exhaustion CD8 + cytolytic T Cells (2021) 11(11):5726–42. PubMed PMC
Geva M, Shouval R, Fein JA, Yerushalmi R, Shimoni A, Nagler A, et al. . The prognostic role of pretransplant serum lactate dehydrogenase levels in acute myeloid leukemia and lymphoma patients undergoing allogenic hematopoietic stem cell transplantation. Biol Blood Marrow Transplant (2020) 26(3):S111–2. doi: 10.1016/j.bbmt.2019.12.620 DOI
Silvano A, Menegazzi G, Peppicelli S, Mancini C, Biagioni A, Tubita A, et al. . Lactate maintainsBCR/Abl expression and signalinginChronic myeloid leukemia cells under nutrient restriction. Oncol Res Featur Preclin Clin Cancer Ther. (2022) 29(1):33–46 doi: 10.3727/096504022x16442289212164 PubMed DOI PMC
Noe JT, Rendon BE, Geller AE, Conroy LR, Morrissey SM, Young LEA, et al. . Lactate supports a metabolic-epigenetic link in macrophage polarization. Sci Adv (2021) 7(46):1–13. doi: 10.1126/sciadv.abi8602 PubMed DOI PMC
Marin E, Bouchet-Delbos L, Renoult O, Louvet C, Nerriere-Daguin V, Managh AJ, et al. . Human tolerogenic dendritic cells regulate immune responses through lactate synthesis. Cell Metab (2019) 30(6):1075–1090.e8. doi: 10.1016/j.cmet.2019.11.011 PubMed DOI
Comito G, Iscaro A, Bacci M, Morandi A, Ippolito L, Parri M, et al. . Lactate modulates CD4 + T-cell polarization and induces an immunosuppressive environment, which sustains prostate carcinoma progression via TLR8/miR21 axis. Oncogene (2019) 38(19):3681–95. doi: 10.1038/s41388-019-0688-7 PubMed DOI
Harmon C, Robinson MW, Hand F, Almuaili D, Mentor K, Houlihan DD, et al. . Lactate-mediated acidification of tumor microenvironment induces apoptosis of liver-resident NK cells in colorectal liver metastasis. Cancer Immunol Res (2019) 7(2):335–46. doi: 10.1158/2326-6066.CIR-18-0481 PubMed DOI
Haas R, Smith J, Rocher-Ros V, Nadkarni S, Montero-Melendez T, D'Acquisto F, et al. . Lactate regulates metabolic and proinflammatory circuits in control of T cell migration and effector functions. PloS Biol (2015) 13(7):1–24. doi: 10.1371/journal.pbio.1002202 PubMed DOI PMC
Feichtinger RG, Lang R. Targeting l-lactate metabolism to overcome resistance to immune therapy of melanoma and other tumor entities. J Oncol (2019) 2019:1–12. doi: 10.1155/2019/2084195 PubMed DOI PMC
Husain Z, Huang Y, Seth P, Sukhatme VP. Tumor-derived lactate modifies antitumor immune response: Effect on myeloid-derived suppressor cells and NK cells. J Immunol (2013) 191(3):1486–95. doi: 10.4049/jimmunol.1202702 PubMed DOI
Angelin A, Gil-de-Gómez L, Dahiya S, Jiao J, Guo L, Levine MH, et al. . Foxp3 reprograms T cell metabolism to function in low-glucose, high-lactate environments. Cell Metab (2017) 25(6):1282–1293.e7. doi: 10.1016/j.cmet.2016.12.018 PubMed DOI PMC
Caslin HL, Abebayehu D, Pinette JA, Ryan JJ. Lactate is a metabolic mediator that shapes immune cell fate and function. Front Physiol (2021) 12:688485. doi: 10.3389/fphys.2021.688485 PubMed DOI PMC
Watson MLJ, Vignali PDA, Mullett SJ, Overacre-Delgoffe AE, Peralta RM, Grebinoski S, et al. . Metabolic support of tumour-infiltrating regulatory T cells by lactic acid. Nature (2021) 591(7851):645–51. doi: 10.1038/s41586-020-03045-2 PubMed DOI PMC
Mendler AN, Hu B, Prinz PU, Kreutz M, Gottfried E, Noessner E. Tumor lactic acidosis suppresses CTL function by inhibition of p38 and JNK/c-jun activation. Int J Cancer (2012) 131(3):633–40. doi: 10.1002/ijc.26410 PubMed DOI
Wang ZH, Peng WB, Zhang P, Yang XP, Zhou Q. Lactate in the tumour microenvironment: From immune modulation to therapy. EBioMedicine (2021) 73:103627. doi: 10.1016/j.ebiom.2021.103627 PubMed DOI PMC
Fischer K, Hoffmann P, Voelkl S, Meidenbauer N, Ammer J, Edinger M, et al. . Inhibitory effect of tumor cell-derived lactic acid on human T cells. Blood (2007) 109(9):3812–9. doi: 10.1182/blood-2006-07-035972 PubMed DOI
Ippolito L, Morandi A, Giannoni E, Chiarugi P. Lactate: A metabolic driver in the tumour landscape. Trends Biochem Sci (2019) 44(2):153–66. doi: 10.1016/j.tibs.2018.10.011 PubMed DOI
Certo M, Tsai CH, Pucino V, Ho PC, Mauro C. Lactate modulation of immune responses in inflammatory versus tumour microenvironments. Nat Rev Immunol (2021) 21(3):151–61. doi: 10.1038/s41577-020-0406-2 PubMed DOI
Gottfried E, Kunz-Schughart LA, Ebner S, Mueller-Klieser W, Hoves S, Andreesen R, et al. . Tumor-derived lactic acid modulates dendritic cell activation and antigen expression. Blood (2006) 107(5):2013–21. doi: 10.1182/blood-2005-05-1795 PubMed DOI
Zhang D, Tang Z, Huang H, Zhou G, Cui Ch, Weng Y, et al. . Metabolic regulation of gene expression by histone lactylation. Nature (2019) 574(7779):575–80. doi: 10.1038/s41586-019-1678-1 PubMed DOI PMC
Chen P, Zuo H, Xiong H, Kolar MJ, Chu Q, Saghatelian A, et al. . Gpr132 sensing of lactate mediates tumor-macrophage interplay to promote breast cancer metastasis. Proc Natl Acad Sci U S A (2017) 114(3):580–5. doi: 10.1073/pnas.1614035114 PubMed DOI PMC
Brown TP, Bhattacharjee P, Ramachandran S, Sivaprakasam S, Ristic B, Sikder MOF, et al. . The lactate receptor GPR81 promotes breast cancer growth via a paracrine mechanism involving antigen-presenting cells in the tumor microenvironment. Oncogene (2020) 39(16):3292–304. doi: 10.1038/s41388-020-1216-5 PubMed DOI
Abebayehu D, Spence AJ, Caslin H, Taruselli M, Haque TT, Kiwanuka KN, et al. . Lactic acid suppresses IgE-mediated mast cell function in vitro and in vivo . Cell Immunol (2019) 341:103918. doi: 10.1016/j.cellimm.2019.04.006 PubMed DOI PMC
Awasthi D, Nagarkoti S, Sadaf S, Chandra T, Kumar S, Dikshit M. Glycolysis dependent lactate formation in neutrophils: A metabolic link between NOX-dependent and independent NETosis. Biochim Biophys Acta - Mol Basis Dis (2019) 1865(12):165542. doi: 10.1016/j.bbadis.2019.165542 PubMed DOI
Brizel DM, Schroeder T, Scher RL, Walenta S, Clough RW, Dewhirst MW, et al. . Elevated tumor lactate concentrations predict for an increased risk of metastases in head-and-neck cancer. Int J Radiat Oncol Biol Phys (2001) 51(2):349–53. doi: 10.1016/S0360-3016(01)01630-3 PubMed DOI
Fric J, Zelante T, Wong AYW, Mertes A, Yu HB, Ricciardi-Castagnoli P. NFAT control of innate immunity. Blood (2012) 120(7):1380–9. doi: 10.1182/blood-2012-02-404475 PubMed DOI
Bendickova K, Tidu F, Fric J. Calcineurin– NFAT signalling in myeloid leucocytes: new prospects and pitfalls in immunosuppressive therapy. EMBO Mol Med (2017) 9(8):990–9. doi: 10.15252/emmm.201707698 PubMed DOI PMC
Fendt S-M, Bell EL, Keibler MA, Olenchock BA, Mayers JR, et al. . Reductive glutamine metabolism is a function of the αketoglutarate to citrate ratio in cells. Nat Commun (2013) 4:1–21. doi: 10.1038/ncomms3236 PubMed DOI PMC
Gellerich FN, Gizatullina Z, Trumbeckaite S, Nguyen HP, Pallas T, Arandarcikaite O, et al. . The regulation of OXPHOS by extramitochondrial calcium. Biochim Biophys Acta - Bioenerg (2010) 1797(6-7):1018–27. doi: 10.1016/j.bbabio.2010.02.005 PubMed DOI
Husain Z, Seth P, Sukhatme VP. Tumor-derived lactate and myeloid-derived suppressor cells: Linking metabolism to cancer immunology. Oncoimmunology (2013) 2(11):9–12. doi: 10.4161/onci.26383 PubMed DOI PMC
Sheppard S, Santosa EK, Lau CM, Violante S, Giovanelli P, Kim H, et al. . Lactate dehydrogenase a-dependent aerobic glycolysis promotes natural killer cell anti-viral and anti-tumor function. Cell Rep (2021) 35(9):1–17. doi: 10.1016/j.celrep.2021.109210 PubMed DOI PMC
Rao Y, Gammon ST, Sutton MN, Zacharias NM, Bhattacharya P, Piwnica-Worms D. Excess exogenous pyruvate inhibits lactate dehydrogenase activity in live cells in an MCT1-dependent manner. J Biol Chem (2021) 297(1):100775. doi: 10.1016/j.jbc.2021.100775 PubMed DOI PMC
Daneshmandi S, Wegiel B. Blockade of lactate dehydrogenase-a ( LDH-a ) improves e ffi cacy of anti-programmed cell death-1. Cancers (Basel) (2019) 11(4):450. doi: 10.3390/cancers11040450 PubMed DOI PMC
Pötzl J, Roser D, Bankel L, Hömberg N, Geishauser A, Brenner CD, et al. . Reversal of tumor acidosis by systemic buffering reactivates NK cells to express IFN-γ and induces NK cell-dependent lymphoma control without other immunotherapies. Int J Cancer (2017) 140(9):2125–33. doi: 10.1002/ijc.30646 PubMed DOI
Saulle E, Spinello I, Quaranta MT, Pasquini L, Pelosi E, Iorio E, et al. . Targeting lactate metabolism by inhibiting MCT1 or MCT4 impairs leukemic cell proliferation, induces two different related death-pathways and increases chemotherapeutic sensitivity of acute myeloid leukemia cells. Front Oncol (2021) 10:621458. doi: 10.3389/fonc.2020.621458 PubMed DOI PMC
He R, Zang J, Zhao Y, Liu Y, Ruan S, Zheng X, et al. . Nanofactory for metabolic and chemodynamic therapy: pro-tumor lactate trapping and anti-tumor ROS transition. J Nanobiotechnology (2021) 19(1):1–14. doi: 10.1186/s12951-021-01169-9 PubMed DOI PMC
Elia I, Haigis MC. Metabolites and the tumour microenvironment: from cellular mechanisms to systemic metabolism. Nat Metab (2021) 3(1):21–32. doi: 10.1038/s42255-020-00317-z PubMed DOI PMC
Colegio OR, Chu NQ, Szabo AL, Chu T, Rhenberg AM, Jairam V, et al. . Functional polarization of tumour-associated macrophages by tumour-derived lactic acid. Nature (2014) 513(7519):559–63. doi: 10.1038/nature13490 PubMed DOI PMC
Rogatzki MJ, Ferguson BS, Goodwin ML, Gladden LB. Lactate is always the end product of glycolysis. Front Neurosci (2015) 9:22. doi: 10.3389/fnins.2015.00022 PubMed DOI PMC
Wu H, Estrella V, Beatty M, Abrahams D, El-Kenawi A, Russell S, et al. . T-Cells produce acidic niches in lymph nodes to suppress their own effector functions. Nat Commun (2020) 11(1):1–13. doi: 10.1038/s41467-020-17756-7 PubMed DOI PMC
Bendickova K, Fric J. Roles of IL-2 in bridging adaptive and innate immunity, and as a tool for cellular immunotherapy. J Leukoc Biol (2020) 108(1):427–37. doi: 10.1002/JLB.5MIR0420-055R PubMed DOI PMC
Wang H, Grzywacz B, Sukovich D, McCullar V, Cao Q, Lee AB, et al. . The unexpected effect of cyclosporin a on CD56+CD16- and CD56+CD16+ natural killer cell subpopulations. Blood (2007) 110(5):1530–9. doi: 10.1182/blood-2006-10-048173 PubMed DOI PMC
Prager I, Watzl C. Mechanisms of natural killer cell-mediated cellular cytotoxicity. J Leukoc Biol (2019) 105(6):1319–29. doi: 10.1002/JLB.MR0718-269R PubMed DOI
Orange JS. Formation and function of the lytic NK-cell immunological synapse. Nat Rev Immunol (2008) 8(9):713–25. doi: 10.1038/nri2381 PubMed DOI PMC
Ochoa MC, Minute L, Rodriguez I, Garasa S, Perez-Ruiz E, Inogés S, et al. . Antibody-dependent cell cytotoxicity: Immunotherapy strategies enhancing effector NK cells. Immunol Cell Biol (2017) 95(4):347–55. doi: 10.1038/icb.2017.6 PubMed DOI
O’Brien KL, Finlay DK. Immunometabolism and natural killer cell responses. Nat Rev Immunol (2019) 19(5):282–90. doi: 10.1038/s41577-019-0139-2 PubMed DOI
Zemanova M, Cernovska M, Havel L, Bartek T, Lukesova S, Jakesova J, et al. . Autologous dendritic cell-based immunotherapy (DCVAC/LuCa) and carboplatin/paclitaxel in advanced non-small cell lung cancer: A randomized, open-label, phase I/II trial. Cancer Treat Res Commun (2021) 28:100427. doi: 10.1016/j.ctarc.2021.100427 PubMed DOI
Bloy N, Pol J, Aranda F, Eggermont A, Cremer I, Fridman WH, et al. . Trial watch: Dendritic cell-based anticancer therapy. Oncoimmunology (2014) 3(11):e963424–1-e963424-16. doi: 10.4161/21624011.2014.963424 PubMed DOI PMC
Sterner RC, Sterner RM. CAR-T cell therapy: current limitations and potential strategies. Blood Cancer J (2021) 11(4):1–11. doi: 10.1038/s41408-021-00459-7 PubMed DOI PMC
Esensten JH, Muller YD, Bluestone JA, Tang Q. Regulatory T-cell therapy for autoimmune and autoinflammatory diseases: The next frontier. J Allergy Clin Immunol (2018) 142(6):1710–8. doi: 10.1016/j.jaci.2018.10.015 PubMed DOI
Rad F, Ghorbani M, Mohammadi Roushandeh A, Habibi Roudkenar M. Mesenchymal stem cell-based therapy for autoimmune diseases: emerging roles of extracellular vesicles. Mol Biol Rep (2019) 46(1):1533–49. doi: 10.1007/s11033-019-04588-y PubMed DOI
Marofi F, Abdul-Rasheed OF, Rahman HS, Budi HS, Jalil AT, Yumashev AV, et al. . CAR-NK cell in cancer immunotherapy; a promising frontier. Cancer Sci (2021) 112(9):3427–36. doi: 10.1111/cas.14993 PubMed DOI PMC
Wang X, Rivière I. Clinical manufacturing of CAR T cells: Foundation of a promising therapy. Mol Ther - Oncolytics (2016) 3:16015. doi: 10.1038/mto.2016.15 PubMed DOI PMC
Ciurea SO, Kongtim P, Soebbing D, Trikha P, Behbehani G, Rondon G, et al. . Decrease post-transplant relapse using donor-derived expanded NK-cells. Leukemia (2021) 36(1):155–64. doi: 10.1038/s41375-021-01349-4 PubMed DOI PMC
Ruggeri L, Vago L, Eikema DJ, de Wreede LC, Ciceri F, Diaz MA, et al. . Natural killer cell alloreactivity in HLA-haploidentical hematopoietic transplantation: a study on behalf of the CTIWP of the EBMT. Bone Marrow Transplant (2021) 56(8):1900–7. doi: 10.1038/s41409-021-01259-0 PubMed DOI
Myers JA, Miller JS. Exploring the NK cell platform for cancer immunotherapy. Nat Rev Clin Oncol (2021) 18(2):85–100. doi: 10.1038/s41571-020-0426-7 PubMed DOI PMC
Burns LJ, Weisdorf DJ, DeFor TE, Vesole DH, Repka TL, Blazar BR, et al. . IL-2-based immunotherapy after authologous transplantation for lymphoma and breast cancer induces immune activation and cytokine release: A phase I/II trial. Bone Marrow Transplant (2003) 32(2):177–86. doi: 10.1038/sj.bmt.1704086 PubMed DOI
Mac Cheever MA. Twelve immunotherapy drugs that could cure cancers. Immunol Rev (2008) 222(1):357–68. doi: 10.1111/j.1600-065X.2008.00604.x PubMed DOI
Terrén I, Orrantia A, Mosteiro A, Vitallé J, Zenarruzabeitia O, Borrego F. Metabolic changes of interleukin-12/15/18-stimulated human NK cells. Sci Rep (2021) 11(1). doi: 10.1038/s41598-021-85960-6 PubMed DOI PMC
Albinger N, Hartmann J, Ullrich E. Current status and perspective of CAR-T and CAR-NK cell therapy trials in Germany. Gene Ther (2021) 28(9):513–27. doi: 10.1038/s41434-021-00246-w PubMed DOI PMC
Daher M, Melo Garcia L, Li Y, Rezvani K. CAR-NK cells: the next wave of cellular therapy for cancer. Clin Transl Immunol (2021) 10(4):1–16. doi: 10.1002/cti2.1274 PubMed DOI PMC
Vallera DA, Felices M, McElmurry R, McCullar V, Zhou X, Schmohl U, et al. . IL15 trispecific killer engagers (TriKE) make natural killer cells specific to CD33+ targets while also inducing persistence, in vivo expansion, and enhanced function. Clin Cancer Res (2016) 22(14):3440–50. doi: 10.1158/1078-0432.CCR-15-2710 PubMed DOI PMC
Reusing SB, Vallera DA, Manser AR, Vatrin T, Bhatia S, Felices M, et al. . CD16xCD33 bispecific killer cell engager (BiKE) as potential immunotherapeutic in pediatric patients with AML and biphenotypic ALL. Cancer Immunol Immunother (2021) 70(12):3701–8. doi: 10.1007/s00262-021-03008-0 PubMed DOI PMC
Demaria O, Gauthier L, Debroas G, Vivier E. Natural killer cell engagers in cancer immunotherapy: Next generation of immuno-oncology treatments. Eur J Immunol (2021) 51(8):1934–42. doi: 10.1002/eji.202048953 PubMed DOI
Kaymak I, Williams KS, Cantor JR, Jones RG. Immunometabolic interplay in the tumor microenvironment. Cancer Cell (2021) 39(1):28–37. doi: 10.1016/j.ccell.2020.09.004 PubMed DOI PMC
Bader JE, Voss K, Rathmell JC. Targeting metabolism to improve the tumor microenvironment for cancer immunotherapy. Mol Cell (2020) 78(6):1019–33. doi: 10.1016/j.molcel.2020.05.034 PubMed DOI PMC
Witney TH, James ML, Shen B, Chang E, Pohling C, Arksey N, et al. . PET imaging of tumor glycolysis downstream of hexokinase through noninvasive measurement of pyruvate kinase M2. Sci Transl Med (2015) 7(310):1–9. doi: 10.1126/scitranslmed.aac6117 PubMed DOI
Deng H, Kan A, Lyu N, He M, Huang X, Qiao S, et al. . Tumor-derived lactate inhibit the efficacy of lenvatinib through regulating PD-L1 expression on neutrophil in hepatocellular carcinoma. J Immunother Cancer (2021) 9(6):1–14. doi: 10.1136/jitc-2020-002305 PubMed DOI PMC
Liu S, Galat V, Galat Y, Lee YKA, Wainwright D, Wu J. NK cell-based cancer immunotherapy: from basic biology to clinical development. J Hematol Oncol (2021) 14(1):1–24. doi: 10.1186/s13045-020-01014-w PubMed DOI PMC
Tarazona R, Lopez-Sejas N, Guerrero B, Hassouneh F, Valhondo I, Pera A, et al. . Current progress in NK cell biology and NK cell-based cancer immunotherapy. Cancer Immunol Immunother (2020) 69(5):879–99. doi: 10.1007/s00262-020-02532-9 PubMed DOI PMC
Becker PSA, Suck G, Nowakowska P, Ullrich E, Seifried E, Bader P, et al. . Selection and expansion of natural killer cells for NK cell-based immunotherapy. Cancer Immunol Immunother (2016) 65(4):477–84. doi: 10.1007/s00262-016-1792-y PubMed DOI PMC
Zhang M, Jin X, Sun R, Xiong X, Wang J, Xie D, et al. . Optimization of metabolism to improve efficacy during CAR-T cell manufacturing. J Transl Med (2021) 19(1):1–11. doi: 10.1186/s12967-021-03165-x PubMed DOI PMC
Terrén I, Orrantia A, Vitallé J, Zenarruzabeitia O, Borrego F. NK cell metabolism and tumor microenvironment. Front Immunol (2019) 10:2278. doi: 10.3389/fimmu.2019.02278 PubMed DOI PMC
Habif G, Crinier A, André P, Vivier E, Narni-Mancinelli E. Targeting natural killer cells in solid tumors. Cell Mol Immunol (2019) 16(5):415–22. doi: 10.1038/s41423-019-0224-2 PubMed DOI PMC
Nersesian S, Schwartz SL, Grantham SR, MacLean LK, Lee SN, Pugh-Toole M, et al. . NK cell infiltration is associated with improved overall survival in solid cancers: A systematic review and meta-analysis. Transl Oncol (2021) 14(1):100930. doi: 10.1016/j.tranon.2020.100930 PubMed DOI PMC
Locatelli F, Pende D, Falco M, Della Chiesa M, Moretta A, Moretta L. NK cells mediate a crucial graft-versus-Leukemia effect in haploidentical-HSCT to cure high-risk acute leukemia. Trends Immunol (2018) 39(7):577–90. doi: 10.1016/j.it.2018.04.009 PubMed DOI
Lee J, Kang TH, Yoo W, Choi H, Jo S, Kong K, et al. . An antibody designed to improve adoptive NK-cell therapy inhibits pancreatic cancer progression in a murine model. Cancer Immunol Res (2019) 7(2):219–29. doi: 10.1158/2326-6066.CIR-18-0317 PubMed DOI
Guo H, Chang YJ, Hong Y, Xu LP, Wang Y, Zhang XH, et al. . Dynamic immune profiling identifies the stronger graft-versus-leukemia (GVL) effects with haploidentical allografts compared to HLA-matched stem cell transplantation. Cell Mol Immunol (2021) 18(5):1172–85. doi: 10.1038/s41423-020-00597-1 PubMed DOI PMC
Valent P, Sadovnik I, Eisenwort G, Bauer K, Herrmann H, Gleixner KV, et al. . Immunotherapy-based targeting and elimination of leukemic stem cells in AML and CML. Int J Mol Sci (2019) 20(17). doi: 10.3390/ijms20174233 PubMed DOI PMC
Ng YY, Du Z, Zhang X, Chng WJ, Wang S. CXCR4 and anti-BCMA CAR co-modified natural killer cells suppress multiple myeloma progression in a xenograft mouse model. Cancer Gene Ther (2022) 29(5):475–83. doi: 10.1038/s41417-021-00365-x PubMed DOI
Slattery K, Woods E, Zaiatz-Bittencourt V, Marks S, Chew S, Conroy M, et al. . TGFβ drives NK cell metabolic dysfunction in human metastatic breast cancer. J Immunother Cancer (2021) 9(2):1–13. doi: 10.1136/jitc-2020-002044 PubMed DOI PMC
Batlle E, Massagué J. Transforming growth factor-β signaling in immunity and cancer. Immunity (2019) 50(4):924–40. doi: 10.1016/j.immuni.2019.03.024 PubMed DOI PMC
Thomas S, Rouilly V, Patin E, Alanio C, Dubois A, Delval C, et al. . The milieu intérieur study - an integrative approach for study of human immunological variance. Clin Immunol (2015) 157(2):277–93. doi: 10.1016/j.clim.2014.12.004 PubMed DOI
Terrén I, Orrantia A, Vitallé J, Astarloa-Pando G, Zenarruzabeitia O, Borrego F. Modulating NK cell metabolism for cancer immunotherapy. Semin Hematol (2020) 57(4):213–24. doi: 10.1053/j.seminhematol.2020.10.003 PubMed DOI