Human myeloid-derived suppressor cell expansion during sepsis is revealed by unsupervised clustering of flow cytometric data

. 2021 Jul ; 51 (7) : 1785-1791. [epub] 20210505

Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid33788255

Myeloid-derived suppressor cells (MDSCs) are important regulators of immune processes during sepsis in mice. However, confirming these observations in humans has been challenging due to the lack of defined preparation protocols and phenotyping schemes for MDSC subsets. Thus, it remains unclear how MDSCs are involved in acute sepsis and whether they have a role in the long-term complications seen in survivors. Here, we combined comprehensive flow cytometry phenotyping with unsupervised clustering using self-organizing maps to identify the three recently defined human MDSC subsets in blood from severe sepsis patients, long-term sepsis survivors, and age-matched controls. We demonstrated the expansion of monocytic M-MDSCs and polymorphonuclear PMN-MDSCs, but not early-stage (e)-MDSCs during acute sepsis. High levels of PMN-MDSCs were also present in long-term survivors many months after discharge, suggesting a possible role in sepsis-related complications. Altogether, by employing unsupervised clustering of flow cytometric data we have confirmed the likely involvement of human MDSC subsets in acute sepsis, and revealed their expansion in sepsis survivors at late time points. The application of this strategy in future studies and in the clinical/diagnostic context would enable rapid progress toward a full understanding of the roles of MDSC in sepsis and other inflammatory conditions.

Zobrazit více v PubMed

Veglia, F., Perego, M. and Gabrilovich, D., Myeloid‐derived suppressor cells coming of age. Nat. Immunol. 2018. 19: 108–119. PubMed PMC

Wu, H., Zhen, Y., Ma, Z., Li, H., Yu, J., Xu, Z. G., Wang, X. Y. et al., Arginase‐1‐dependent promotion of TH17 differentiation and disease progression by MDSCs in systemic lupus erythematosus. Sci. Transl. Med. 2016. 8: 331ra40. PubMed PMC

El Daker, S., Sacchi, A., Tempestilli, M., Carducci, C., Goletti, D., Vanini, V., Colizzi, V. et al., Granulocytic myeloid derived suppressor cells expansion during active pulmonary tuberculosis is associated with high nitric oxide plasma level. PLoS One. 2015. 10: e0123772. PubMed PMC

Rieber, N., Singh, A., Oz, H., Carevic, M., Bouzani, M., Amich, J., Ost, M. et al., Pathogenic fungi regulate immunity by inducing neutrophilic myeloid‐derived suppressor cells. Cell Host Microbe. 2015. 17: 507–514. PubMed PMC

Huang, A., Zhang, B., Yan, W., Wang, B., Wei, H., Zhang, F., Wu, L. et al., Myeloid‐derived suppressor cells regulate immune response in patients with chronic hepatitis B virus infection through PD‐1‐induced IL‐10. J. Immunol. 2014. 193: 5461–5469. PubMed

Uhel, F., Azzaoui, I., Gregoire, M., Pangault, C., Dulong, J., Tadie, J. M., Gacouin, A. et al., Early expansion of circulating granulocytic myeloid‐derived suppressor cells predicts development of nosocomial infections in patients with sepsis. Am. J. Respir. Crit. Care Med. 2017. 196: 315–327. PubMed

Sander, L. E., Sackett, S. D., Dierssen, U., Beraza, N., Linke, R. P., Muller, M., Blander, J. M. et al., Hepatic acute‐phase proteins control innate immune responses during infection by promoting myeloid‐derived suppressor cell function. J. Exp. Med. 2010. 207: 1453–1464. PubMed PMC

Rieber, N., Brand, A., Hector, A., Graepler‐Mainka, U., Ost, M., Schafer, I., Wecker, I. et al., Flagellin induces myeloid‐derived suppressor cells: implications for Pseudomonas aeruginosa infection in cystic fibrosis lung disease. J. Immunol. 2013. 190: 1276–1284. PubMed

Damuzzo, V., Pinton, L., Desantis, G., Solito, S., Marigo, I., Bronte, V. and Mandruzzato, S., Complexity and challenges in defining myeloid‐derived suppressor cells. Cytometry B Clin. Cytom. 2015. 88: 77–91. PubMed PMC

Bronte, V., Brandau, S., Chen, S. H., Colombo, M. P., Frey, A. B., Greten, T. F., Mandruzzato, S. et al., Recommendations for myeloid‐derived suppressor cell nomenclature and characterization standards. Nat. Commun. 2016. 7: 12150. PubMed PMC

Rudd, K. E., Johnson, S. C., Agesa, K. M., Shackelford, K. A., Tsoi, D., Kievlan, D. R., Colombara, D. V. et al., Global, regional, and national sepsis incidence and mortality, 1990–2017: analysis for the Global Burden of Disease Study. Lancet. 2020. 395: 200–211. PubMed PMC

Delano, M. J., Scumpia, P. O., Weinstein, J. S., Coco, D., Nagaraj, S., Kelly‐Scumpia, K. M., O'Malley, K. A. et al., MyD88‐dependent expansion of an immature GR‐1(+)CD11b(+) population induces T cell suppression and Th2 polarization in sepsis. J. Exp. Med. 2007. 204: 1463–1474. PubMed PMC

Makarenkova, V. P., Bansal, V., Matta, B. M., Perez, L. A. and Ochoa, J. B., CD11b+/Gr‐1+ myeloid suppressor cells cause T cell dysfunction after traumatic stress. J. Immunol. 2006. 176: 2085–2094. PubMed

Schrijver, I. T., Theroude, C. and Roger, T., Myeloid‐derived suppressor cells in sepsis. Front. Immunol. 2019. 10: 327. PubMed PMC

Mira, J. C., Gentile, L. F., Mathias, B. J., Efron, P. A., Brakenridge, S. C., Mohr, A. M., Moore, F. A. et al., Sepsis pathophysiology, chronic critical illness, and persistent inflammation‐immunosuppression and catabolism syndrome. Crit. Care Med. 2017. 45: 253–262. PubMed PMC

Mathias, B., Delmas, A. L., Ozrazgat‐Baslanti, T., Vanzant, E. L., Szpila, B. E., Mohr, A. M., Moore, F. A. et al., Human myeloid‐derived suppressor cells are associated with chronic immune suppression after severe sepsis/septic shock. Ann. Surg. 2017. 265: 827–834. PubMed PMC

Janols, H., Bergenfelz, C., Allaoui, R., Larsson, A. M., Ryden, L., Bjornsson, S., Janciauskiene, S. et al., A high frequency of MDSCs in sepsis patients, with the granulocytic subtype dominating in Gram‐positive cases. J. Leukoc. Biol. 2014. 96: 685–693. PubMed

Gentile, L. F., Cuenca, A. G., Efron, P. A., Ang, D., Bihorac, A., McKinley, B. A., Moldawer, L. L. et al., Persistent inflammation and immunosuppression: a common syndrome and new horizon for surgical intensive care. J. Trauma Acute Care Surg. 2012. 72: 1491–1501. PubMed PMC

Van Gassen, S., Callebaut, B., Van Helden, M. J., Lambrecht, B. N., Demeester, P., Dhaene, T. and Saeys, Y., FlowSOM: using self‐organizing maps for visualization and interpretation of cytometry data. Cytometry A. 2015. 87: 636–645. PubMed

Vetsika, E. K., Koinis, F., Gioulbasani, M., Aggouraki, D., Koutoulaki, A., Skalidaki, E., Mavroudis, D. et al., A circulating subpopulation of monocytic myeloid‐derived suppressor cells as an independent prognostic/predictive factor in untreated non‐small lung cancer patients. J. Immunol. Res. 2014. 2014: 659294. PubMed PMC

Veglia, F., Hashimoto, A., Dweep, H., Sanseviero, E., De Leo, A., Tcyganov, E., Kossenkov, A. et al., Analysis of classical neutrophils and polymorphonuclear myeloid‐derived suppressor cells in cancer patients and tumor‐bearing mice. J. Exp. Med. 2021. 218: e20201803. PubMed PMC

Derive, M., Bouazza, Y., Alauzet, C. and Gibot, S., Myeloid‐derived suppressor cells control microbial sepsis. Intensive Care Med. 2012. 38: 1040–1049. PubMed

Mirza, N., Fishman, M., Fricke, I., Dunn, M., Neuger, A. M., Frost, T. J., Lush, R. M. et al., All‐trans‐retinoic acid improves differentiation of myeloid cells and immune response in cancer patients. Cancer Res. 2006. 66: 9299–9307. PubMed PMC

Iclozan, C., Antonia, S., Chiappori, A., Chen, D. T. and Gabrilovich, D., Therapeutic regulation of myeloid‐derived suppressor cells and immune response to cancer vaccine in patients with extensive stage small cell lung cancer. Cancer Immunol. Immunother. 2013. 62: 909–918. PubMed PMC

Cossarizza, A., Chang, H. D., Radbruch, A., Acs, A., Adam, D., Adam‐Klages, S., Agace, W. W. et al., Guidelines for the use of flow cytometry and cell sorting in immunological studies (second edition). Eur. J. Immunol. 2019. 49: 1457–1973. PubMed PMC

Monaco, G., Chen, H., Poidinger, M., Chen, J., de Magalhaes, J. P. and Larbi, A., Flowai: automatic and interactive anomaly discerning tools for flow cytometry data. Bioinformatics. 2016. 32: 2473–2480. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...