Human myeloid-derived suppressor cell expansion during sepsis is revealed by unsupervised clustering of flow cytometric data
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
33788255
PubMed Central
PMC8360154
DOI
10.1002/eji.202049141
Knihovny.cz E-zdroje
- Klíčová slova
- Flow cytometry, Multidimensional clustering, Myeloid-derived suppressor cells, Sepsis, Septic shock,
- MeSH
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- monocyty imunologie MeSH
- myeloidní supresorové buňky imunologie MeSH
- průtoková cytometrie metody MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- sepse imunologie MeSH
- shluková analýza MeSH
- zánět imunologie MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Myeloid-derived suppressor cells (MDSCs) are important regulators of immune processes during sepsis in mice. However, confirming these observations in humans has been challenging due to the lack of defined preparation protocols and phenotyping schemes for MDSC subsets. Thus, it remains unclear how MDSCs are involved in acute sepsis and whether they have a role in the long-term complications seen in survivors. Here, we combined comprehensive flow cytometry phenotyping with unsupervised clustering using self-organizing maps to identify the three recently defined human MDSC subsets in blood from severe sepsis patients, long-term sepsis survivors, and age-matched controls. We demonstrated the expansion of monocytic M-MDSCs and polymorphonuclear PMN-MDSCs, but not early-stage (e)-MDSCs during acute sepsis. High levels of PMN-MDSCs were also present in long-term survivors many months after discharge, suggesting a possible role in sepsis-related complications. Altogether, by employing unsupervised clustering of flow cytometric data we have confirmed the likely involvement of human MDSC subsets in acute sepsis, and revealed their expansion in sepsis survivors at late time points. The application of this strategy in future studies and in the clinical/diagnostic context would enable rapid progress toward a full understanding of the roles of MDSC in sepsis and other inflammatory conditions.
Department of Biology Faculty of Medicine Masaryk University Brno Czech Republic
International Clinical Research Center St Anne's University Hospital Brno Brno Czech Republic
Zobrazit více v PubMed
Veglia, F., Perego, M. and Gabrilovich, D., Myeloid‐derived suppressor cells coming of age. Nat. Immunol. 2018. 19: 108–119. PubMed PMC
Wu, H., Zhen, Y., Ma, Z., Li, H., Yu, J., Xu, Z. G., Wang, X. Y. et al., Arginase‐1‐dependent promotion of TH17 differentiation and disease progression by MDSCs in systemic lupus erythematosus. Sci. Transl. Med. 2016. 8: 331ra40. PubMed PMC
El Daker, S., Sacchi, A., Tempestilli, M., Carducci, C., Goletti, D., Vanini, V., Colizzi, V. et al., Granulocytic myeloid derived suppressor cells expansion during active pulmonary tuberculosis is associated with high nitric oxide plasma level. PLoS One. 2015. 10: e0123772. PubMed PMC
Rieber, N., Singh, A., Oz, H., Carevic, M., Bouzani, M., Amich, J., Ost, M. et al., Pathogenic fungi regulate immunity by inducing neutrophilic myeloid‐derived suppressor cells. Cell Host Microbe. 2015. 17: 507–514. PubMed PMC
Huang, A., Zhang, B., Yan, W., Wang, B., Wei, H., Zhang, F., Wu, L. et al., Myeloid‐derived suppressor cells regulate immune response in patients with chronic hepatitis B virus infection through PD‐1‐induced IL‐10. J. Immunol. 2014. 193: 5461–5469. PubMed
Uhel, F., Azzaoui, I., Gregoire, M., Pangault, C., Dulong, J., Tadie, J. M., Gacouin, A. et al., Early expansion of circulating granulocytic myeloid‐derived suppressor cells predicts development of nosocomial infections in patients with sepsis. Am. J. Respir. Crit. Care Med. 2017. 196: 315–327. PubMed
Sander, L. E., Sackett, S. D., Dierssen, U., Beraza, N., Linke, R. P., Muller, M., Blander, J. M. et al., Hepatic acute‐phase proteins control innate immune responses during infection by promoting myeloid‐derived suppressor cell function. J. Exp. Med. 2010. 207: 1453–1464. PubMed PMC
Rieber, N., Brand, A., Hector, A., Graepler‐Mainka, U., Ost, M., Schafer, I., Wecker, I. et al., Flagellin induces myeloid‐derived suppressor cells: implications for Pseudomonas aeruginosa infection in cystic fibrosis lung disease. J. Immunol. 2013. 190: 1276–1284. PubMed
Damuzzo, V., Pinton, L., Desantis, G., Solito, S., Marigo, I., Bronte, V. and Mandruzzato, S., Complexity and challenges in defining myeloid‐derived suppressor cells. Cytometry B Clin. Cytom. 2015. 88: 77–91. PubMed PMC
Bronte, V., Brandau, S., Chen, S. H., Colombo, M. P., Frey, A. B., Greten, T. F., Mandruzzato, S. et al., Recommendations for myeloid‐derived suppressor cell nomenclature and characterization standards. Nat. Commun. 2016. 7: 12150. PubMed PMC
Rudd, K. E., Johnson, S. C., Agesa, K. M., Shackelford, K. A., Tsoi, D., Kievlan, D. R., Colombara, D. V. et al., Global, regional, and national sepsis incidence and mortality, 1990–2017: analysis for the Global Burden of Disease Study. Lancet. 2020. 395: 200–211. PubMed PMC
Delano, M. J., Scumpia, P. O., Weinstein, J. S., Coco, D., Nagaraj, S., Kelly‐Scumpia, K. M., O'Malley, K. A. et al., MyD88‐dependent expansion of an immature GR‐1(+)CD11b(+) population induces T cell suppression and Th2 polarization in sepsis. J. Exp. Med. 2007. 204: 1463–1474. PubMed PMC
Makarenkova, V. P., Bansal, V., Matta, B. M., Perez, L. A. and Ochoa, J. B., CD11b+/Gr‐1+ myeloid suppressor cells cause T cell dysfunction after traumatic stress. J. Immunol. 2006. 176: 2085–2094. PubMed
Schrijver, I. T., Theroude, C. and Roger, T., Myeloid‐derived suppressor cells in sepsis. Front. Immunol. 2019. 10: 327. PubMed PMC
Mira, J. C., Gentile, L. F., Mathias, B. J., Efron, P. A., Brakenridge, S. C., Mohr, A. M., Moore, F. A. et al., Sepsis pathophysiology, chronic critical illness, and persistent inflammation‐immunosuppression and catabolism syndrome. Crit. Care Med. 2017. 45: 253–262. PubMed PMC
Mathias, B., Delmas, A. L., Ozrazgat‐Baslanti, T., Vanzant, E. L., Szpila, B. E., Mohr, A. M., Moore, F. A. et al., Human myeloid‐derived suppressor cells are associated with chronic immune suppression after severe sepsis/septic shock. Ann. Surg. 2017. 265: 827–834. PubMed PMC
Janols, H., Bergenfelz, C., Allaoui, R., Larsson, A. M., Ryden, L., Bjornsson, S., Janciauskiene, S. et al., A high frequency of MDSCs in sepsis patients, with the granulocytic subtype dominating in Gram‐positive cases. J. Leukoc. Biol. 2014. 96: 685–693. PubMed
Gentile, L. F., Cuenca, A. G., Efron, P. A., Ang, D., Bihorac, A., McKinley, B. A., Moldawer, L. L. et al., Persistent inflammation and immunosuppression: a common syndrome and new horizon for surgical intensive care. J. Trauma Acute Care Surg. 2012. 72: 1491–1501. PubMed PMC
Van Gassen, S., Callebaut, B., Van Helden, M. J., Lambrecht, B. N., Demeester, P., Dhaene, T. and Saeys, Y., FlowSOM: using self‐organizing maps for visualization and interpretation of cytometry data. Cytometry A. 2015. 87: 636–645. PubMed
Vetsika, E. K., Koinis, F., Gioulbasani, M., Aggouraki, D., Koutoulaki, A., Skalidaki, E., Mavroudis, D. et al., A circulating subpopulation of monocytic myeloid‐derived suppressor cells as an independent prognostic/predictive factor in untreated non‐small lung cancer patients. J. Immunol. Res. 2014. 2014: 659294. PubMed PMC
Veglia, F., Hashimoto, A., Dweep, H., Sanseviero, E., De Leo, A., Tcyganov, E., Kossenkov, A. et al., Analysis of classical neutrophils and polymorphonuclear myeloid‐derived suppressor cells in cancer patients and tumor‐bearing mice. J. Exp. Med. 2021. 218: e20201803. PubMed PMC
Derive, M., Bouazza, Y., Alauzet, C. and Gibot, S., Myeloid‐derived suppressor cells control microbial sepsis. Intensive Care Med. 2012. 38: 1040–1049. PubMed
Mirza, N., Fishman, M., Fricke, I., Dunn, M., Neuger, A. M., Frost, T. J., Lush, R. M. et al., All‐trans‐retinoic acid improves differentiation of myeloid cells and immune response in cancer patients. Cancer Res. 2006. 66: 9299–9307. PubMed PMC
Iclozan, C., Antonia, S., Chiappori, A., Chen, D. T. and Gabrilovich, D., Therapeutic regulation of myeloid‐derived suppressor cells and immune response to cancer vaccine in patients with extensive stage small cell lung cancer. Cancer Immunol. Immunother. 2013. 62: 909–918. PubMed PMC
Cossarizza, A., Chang, H. D., Radbruch, A., Acs, A., Adam, D., Adam‐Klages, S., Agace, W. W. et al., Guidelines for the use of flow cytometry and cell sorting in immunological studies (second edition). Eur. J. Immunol. 2019. 49: 1457–1973. PubMed PMC
Monaco, G., Chen, H., Poidinger, M., Chen, J., de Magalhaes, J. P. and Larbi, A., Flowai: automatic and interactive anomaly discerning tools for flow cytometry data. Bioinformatics. 2016. 32: 2473–2480. PubMed