Overlapping but distinct: a new model for G-quadruplex biochemical specificity
Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
33544841
PubMed Central
PMC7913677
DOI
10.1093/nar/gkab037
PII: 6129332
Knihovny.cz E-zdroje
- MeSH
- DNA chemie MeSH
- fluorescence MeSH
- G-kvadruplexy * MeSH
- guanosintrifosfát chemie MeSH
- molekulární modely MeSH
- mutace MeSH
- peroxidasy chemie MeSH
- sekvence nukleotidů MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- DNA MeSH
- guanosintrifosfát MeSH
- peroxidasy MeSH
G-quadruplexes are noncanonical nucleic acid structures formed by stacked guanine tetrads. They are capable of a range of functions and thought to play widespread biological roles. This diversity raises an important question: what determines the biochemical specificity of G-quadruplex structures? The answer is particularly important from the perspective of biological regulation because genomes can contain hundreds of thousands of G-quadruplexes with a range of functions. Here we analyze the specificity of each sequence in a 496-member library of variants of a reference G-quadruplex with respect to five functions. Our analysis shows that the sequence requirements of G-quadruplexes with these functions are different from one another, with some mutations altering biochemical specificity by orders of magnitude. Mutations in tetrads have larger effects than mutations in loops, and changes in specificity are correlated with changes in multimeric state. To complement our biochemical data we determined the solution structure of a monomeric G-quadruplex from the library. The stacked and accessible tetrads rationalize why monomers tend to promote a model peroxidase reaction and generate fluorescence. Our experiments support a model in which the sequence requirements of G-quadruplexes with different functions are overlapping but distinct. This has implications for biological regulation, bioinformatics, and drug design.
Department of Cell Biology Faculty of Science Charles University Prague Prague 128 44 Czech Republic
Zobrazit více v PubMed
Rich A. DNA comes in many forms. Gene. 1993; 135:99–109. PubMed
Gellert M., Lipsett M.N., Davies D.R.. Helix formation by guanylic acid. Proc. Natl. Acad. Sci. U.S.A. 1962; 47:2013–2018. PubMed PMC
Davis J.T. G-quartets 40 years later: from 5′-GMP to molecular biology and supramolecular chemistry. Angew. Chem. Int. Ed. Engl. 2004; 43:668–698. PubMed
Fry M. Tetraplex DNA and its interacting proteins. Front. Biosci. 2007; 12:4336–4351. PubMed
Brázda V., Hároníková L., Liao J.C., Fojta M.. DNA and RNA quadruplex-binding proteins. Int. J. Mol. Sci. 2014; 15:17493–17517. PubMed PMC
Monchaud D., Teulade-Fichou M.P.. A hitchhiker's guide to G-quadruplex ligands. Org. Biomol. Chem. 2008; 6:627–636. PubMed
Lauhon C.T., Szostak J.W.. RNA aptamers that bind flavin and nicotinamide redox cofactors. J. Am. Chem. Soc. 1995; 117:1246–1257. PubMed
Li Y., Geyer C.R., Sen D.. Recognition of anionic porphyrins by DNA aptamers. Biochemistry. 1996; 35:6911–6922. PubMed
Curtis E.A., Liu D.R.. Discovery of widespread GTP-binding motifs in genomic RNA and DNA. Chem. Biol. 2013; 20:521–532. PubMed PMC
Merkle T., Sinn M., Hartig J.S.. Interactions between flavins and quadruplex nucleic acids. ChemBioChem. 2015; 16:2437–2440. PubMed
Travascio P., Li Y., Sen D.. DNA-enhanced peroxidase activity of a DNA-aptamer-hemin complex. Chem. Biol. 1998; 5:505–517. PubMed
Sen D., Poon L.C.. RNA and DNA complexes with hemin [Fe(III) heme] are efficient peroxidases and peroxygenases: how do they do it and what does it mean. Crit. Rev. Biochem. Mol. Biol. 2011; 46:478–492. PubMed
Mendez M.A., Szalai V.A.. Fluorescence of unmodified oligonucleotides: a tool to probe G-quadruplex DNA structure. Biopolymers. 2009; 91:841–850. PubMed
Kwok C.K., Sherlock M.E., Bevilacqua P.C.. Effect of loop sequence and loop length on the intrinsic fluorescence of G-quadruplexes. Biochemistry. 2013; 52:3019–3021. PubMed
Majerová T., Streckerová T., Bednárová L., Curtis E.A.. Sequence requirements of intrinsically fluorescent G-quadruplexes. Biochemistry. 2018; 57:4052–4062. PubMed
Kendrick S., Hurley L.H.. The role of G-quadruplex/i-motif secondary structures as cis-acting regulatory elements. Pure Appl. Chem. 2010; 82:1609–1621. PubMed PMC
Bugaut A., Balasubramanian S.. 5′-UTR RNA G-quadruplexes: translation regulation and targeting. Nucleic Acids Res. 2012; 40:4727–4741. PubMed PMC
Rhodes D., Lipps H.J.. G-quadruplexes and their regulatory roles in biology. Nucleic Acids Res. 2015; 43:8627–8637. PubMed PMC
Huppert J.L., Balasubramanian S.. G-quadruplexes in promoters throughout the human genome. Nucleic Acids Res. 2007; 35:406–413. PubMed PMC
Todd A.K., Johnston M., Neidle S.. Highly prevalent putative quadruplex sequence motifs in human DNA. Nucleic Acids Res. 2005; 33:2901–2907. PubMed PMC
Huppert J.L., Balasubramanian S.. Prevalence of quadruplexes in the human genome. Nucleic Acids Res. 2005; 33:2908–2916. PubMed PMC
Chambers V.S., Marsico G., Boutell J.M., Di Antonio M., Smith G.P., Balasubramanian S.. High-throughput sequencing of DNA G-quadruplex structures in the human genome. Nat. Biotechnol. 2015; 33:877–881. PubMed
Balasubramanian S., Hurley L.H., Neidle S.. Targeting G-quadruplexes in gene promoters: a novel anticancer strategy. Nat. Rev. Drug Discovery. 2011; 10:261–275. PubMed PMC
Burge S., Parkinson G.N., Hazel P., Todd A.K., Neidle S.. Quadruplex DNA: sequence, topology and structure. Nucleic Acids Res. 2006; 34:5402–5415. PubMed PMC
da Silva M.W. Geometric formalism for DNA quadruplex folding. Chem. Eur. J. 2007; 13:9738–9745. PubMed
Adrian M., Heddi B., Phan A.T.. NMR spectroscopy of G-quadruplexes. Methods. 2012; 57:11–24. PubMed
Karsisiotis A.I., O’Kane C., da Silva M.W.. DNA quadruplex folding formalism - a tutorial on quadruplex topologies. Methods. 2013; 64:28–35. PubMed
Zhang S., Wu Y., Zhang W.. G-quadruplex structures and their interaction diversity with ligands. ChemMedChem. 2014; 9:899–911. PubMed
Phan A.T., Kuryavyi V., Gaw H.Y., Patel D.J.. Small-molecule interaction with a five-guanine-tract G-quadruplex structure from the human MYC promoter. Nat. Chem. Biol. 2005; 1:167–173. PubMed PMC
Chung W.J., Heddi B., Hamon F., Teulade-Fichou M.P., Phan A.T.. Solution structure of a G-quadruplex bound to the bisquinolinium compound Phen-CD(3). Agnew. Chem. Int. Ed. Engl. 2014; 53:999–1002. PubMed
Le D.D., Di Antonio M., Chan L.K.M., Balasubramanian S.. G-quadruplex ligands exhibit differential G-tetrad selectivity. Chem. Commun. 2015; 51:8048–8050. PubMed
Arora A., Maiti S.. Effect of loop orientation on quadruplex-TMPyP4 interaction. J. Phys. Chem. B. 2008; 112:8151–8159. PubMed
Campbell N.H., Parkinson G.N., Reszka A.P., Neidle S.. Structural basis of DNA quadruplex recognition by an acridine drug. J. Am. Chem. Soc. 2008; 130:6722–6724. PubMed
Campbell N.H., Patel M., Tofa A.B., Ghosh R., Parkinson G.N., Neidle S.. Selectivity in ligand recognition of G-quadruplex loops. Biochemistry. 2009; 48:1675–1680. PubMed
Švehlová K., Lawrence M.S., Bednárová L., Curtis E.A.. Altered biochemical specificity of G-quadruplexes with mutated tetrads. Nucleic Acids Res. 2016; 44:10789–10803. PubMed PMC
Kolesnikova S., Srb P., Vrzal L., Lawrence M.S., Veverka V., Curtis E.A.. GTP-dependent formation of multimeric G-quadruplexes. ACS Chem. Biol. 2019; 14:1951–1963. PubMed
Kolesnikova S., Hubálek M., Bednárová L., Cvačka J., Curtis E.A.. Multimerization rules for G-quadruplexes. Nucleic Acids Res. 2017; 45:8684–8696. PubMed PMC
Schanda P., Brutscher B.. Very fast two-dimensional NMR spectroscopy for real-time investigation of dynamic events in proteins on the time scale of seconds. J. Am. Chem. Soc. 2005; 127:8014–8015. PubMed
Phan A.T. Long-range imino proton-13C J-couplings and the through-bond correlation of imino and non-exchangeable protons in unlabeled DNA. J. Biomol. NMR. 2000; 16:175–178. PubMed
Goddard T.D., Kneller D.G.. SPARKY 3. 2008; San Francisco: University of California.
Lee W., Tonelli M., Markley J.L.. NMRFAM-SPARKY: enhanced software for biomolecular NMR spectroscopy. Bioinformatics. 2015; 31:1325–1327. PubMed PMC
Schwieters C.D., Kuszewski J.J., Tjandra N., Clore G.M.. The Xplor-NIH NMR molecular structure determination package. J. Magn. Reson. 2003; 160:66–74. PubMed
Kolesnikova S., Curtis E.A.. Structure and function of multimeric G-quadruplexes. Molecules. 2019; 24:E3074. PubMed PMC
Jolliffe I.T. Principal Component Analysis. 2002; 2nd ednNY: Springer.
Jaumot J., Gargallo R.. Using principal component analysis to find correlations between loop-related and thermodynamic variables for G-quadruplex forming sequences. Biochimie. 2010; 92:1016–1023. PubMed
Nicoludis J.M., Miller S.T., Jeffrey P.D., Barrett S.P., Rablen P.R., Lawton T.J., Yatsunyk L.A.. Optimized end-stacking provides specificity of N-methyl mesoporphyrin IX for human telomeric G-quadruplex DNA. J. Am. Chem. Soc. 2012; 134:20446–20456. PubMed
Trajkovski M., da Silva M.W., Plavec J.. Unique structural features of interconverting monomeric and dimeric G-quadruplexes adopted by a sequence from the intron of the N-myc gene. J. Am. Chem. Soc. 2012; 134:4132–4141. PubMed
Calabrese D.R., Chen X., Leon E.C., Gaikwad S.M., Phyo Z., Hewitt W.M., Alden S., Hilimire T.A., He F., Michalowski A.M.et al. .. Chemical and structural studies provide a mechanistic basis for recognition of the MYC G-quadruplex. Nat. Commun. 2018; 9:4229. PubMed PMC
Šket P., Virgilio A., Esposito V., Galeone A., Plavec J.. Strand directionality affects cation binding and movement within tetramolecular G-quadruplexes. Nucleic Acids Res. 2012; 40:11047–11057. PubMed PMC
Doluca O., Withers J.M., Filichev V.V.. Molecular engineering of guanine-rich sequences: Z-DNA, DNA triplexes, and G-quadruplexes. Chem. Rev. 2013; 113:3044–3083. PubMed
Miannay F.A., Banyasz A., Gustavsson T., Markovitsi D.. Excited states and energy transfer in G-quadruplexes. J. Phys. Chem. C. 2009; 113:11760–11765.
Li X.M., Zheng K.W., Zhang J.Y., Liu H.H., He Y.D., Yuan B.F., Hao Y.H., Tan Z.. Guanine-vacancy-bearing G-quadruplexes responsive to guanine derivatives. Proc. Natl. Acad. Sci. U.S.A. 2015; 112:14581–14586. PubMed PMC
Heddi B., Martín-Pintado N., Serimbetov Z., Kari T.M., Phan A.T.. G-quadruplexes with (4n-1) guanines in the G-tetrad core: formation of a G-triad·water complex and implication for small-molecule binding. Nucleic Acids Res. 2016; 44:910–916. PubMed PMC
Nasiri A.H., Wurm J.P., Immer C., Weickhmann A.K., Wöhnert J.. Anintermolecular G-quadruplex as the basis for GTP recognition in the class V-GTP aptamer. RNA. 2016; 22:1750–1759. PubMed PMC
Winnerdy F.R., Das P., Heddi B., Phan A.T.. Solution structures of a G-quadruplex bound to linear- and cyclic-dinucleotides. J. Am. Chem. Soc. 2019; 141:18038–18047. PubMed
Hazel P., Huppert J., Balasubramanian S., Neidle S.. Loop-length-dependent folding of G-quadruplexes. J. Am. Chem. Soc. 2004; 126:16405–16415. PubMed
NMR Screen Reveals the Diverse Structural Landscape of a G-Quadruplex Library
Pushing the Limits of Nucleic Acid Function