Overlapping but distinct: a new model for G-quadruplex biochemical specificity

. 2021 Feb 26 ; 49 (4) : 1816-1827.

Jazyk angličtina Země Anglie, Velká Británie Médium print

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid33544841

G-quadruplexes are noncanonical nucleic acid structures formed by stacked guanine tetrads. They are capable of a range of functions and thought to play widespread biological roles. This diversity raises an important question: what determines the biochemical specificity of G-quadruplex structures? The answer is particularly important from the perspective of biological regulation because genomes can contain hundreds of thousands of G-quadruplexes with a range of functions. Here we analyze the specificity of each sequence in a 496-member library of variants of a reference G-quadruplex with respect to five functions. Our analysis shows that the sequence requirements of G-quadruplexes with these functions are different from one another, with some mutations altering biochemical specificity by orders of magnitude. Mutations in tetrads have larger effects than mutations in loops, and changes in specificity are correlated with changes in multimeric state. To complement our biochemical data we determined the solution structure of a monomeric G-quadruplex from the library. The stacked and accessible tetrads rationalize why monomers tend to promote a model peroxidase reaction and generate fluorescence. Our experiments support a model in which the sequence requirements of G-quadruplexes with different functions are overlapping but distinct. This has implications for biological regulation, bioinformatics, and drug design.

Zobrazit více v PubMed

Rich A. DNA comes in many forms. Gene. 1993; 135:99–109. PubMed

Gellert M., Lipsett M.N., Davies D.R.. Helix formation by guanylic acid. Proc. Natl. Acad. Sci. U.S.A. 1962; 47:2013–2018. PubMed PMC

Davis J.T. G-quartets 40 years later: from 5′-GMP to molecular biology and supramolecular chemistry. Angew. Chem. Int. Ed. Engl. 2004; 43:668–698. PubMed

Fry M. Tetraplex DNA and its interacting proteins. Front. Biosci. 2007; 12:4336–4351. PubMed

Brázda V., Hároníková L., Liao J.C., Fojta M.. DNA and RNA quadruplex-binding proteins. Int. J. Mol. Sci. 2014; 15:17493–17517. PubMed PMC

Monchaud D., Teulade-Fichou M.P.. A hitchhiker's guide to G-quadruplex ligands. Org. Biomol. Chem. 2008; 6:627–636. PubMed

Lauhon C.T., Szostak J.W.. RNA aptamers that bind flavin and nicotinamide redox cofactors. J. Am. Chem. Soc. 1995; 117:1246–1257. PubMed

Li Y., Geyer C.R., Sen D.. Recognition of anionic porphyrins by DNA aptamers. Biochemistry. 1996; 35:6911–6922. PubMed

Curtis E.A., Liu D.R.. Discovery of widespread GTP-binding motifs in genomic RNA and DNA. Chem. Biol. 2013; 20:521–532. PubMed PMC

Merkle T., Sinn M., Hartig J.S.. Interactions between flavins and quadruplex nucleic acids. ChemBioChem. 2015; 16:2437–2440. PubMed

Travascio P., Li Y., Sen D.. DNA-enhanced peroxidase activity of a DNA-aptamer-hemin complex. Chem. Biol. 1998; 5:505–517. PubMed

Sen D., Poon L.C.. RNA and DNA complexes with hemin [Fe(III) heme] are efficient peroxidases and peroxygenases: how do they do it and what does it mean. Crit. Rev. Biochem. Mol. Biol. 2011; 46:478–492. PubMed

Mendez M.A., Szalai V.A.. Fluorescence of unmodified oligonucleotides: a tool to probe G-quadruplex DNA structure. Biopolymers. 2009; 91:841–850. PubMed

Kwok C.K., Sherlock M.E., Bevilacqua P.C.. Effect of loop sequence and loop length on the intrinsic fluorescence of G-quadruplexes. Biochemistry. 2013; 52:3019–3021. PubMed

Majerová T., Streckerová T., Bednárová L., Curtis E.A.. Sequence requirements of intrinsically fluorescent G-quadruplexes. Biochemistry. 2018; 57:4052–4062. PubMed

Kendrick S., Hurley L.H.. The role of G-quadruplex/i-motif secondary structures as cis-acting regulatory elements. Pure Appl. Chem. 2010; 82:1609–1621. PubMed PMC

Bugaut A., Balasubramanian S.. 5′-UTR RNA G-quadruplexes: translation regulation and targeting. Nucleic Acids Res. 2012; 40:4727–4741. PubMed PMC

Rhodes D., Lipps H.J.. G-quadruplexes and their regulatory roles in biology. Nucleic Acids Res. 2015; 43:8627–8637. PubMed PMC

Huppert J.L., Balasubramanian S.. G-quadruplexes in promoters throughout the human genome. Nucleic Acids Res. 2007; 35:406–413. PubMed PMC

Todd A.K., Johnston M., Neidle S.. Highly prevalent putative quadruplex sequence motifs in human DNA. Nucleic Acids Res. 2005; 33:2901–2907. PubMed PMC

Huppert J.L., Balasubramanian S.. Prevalence of quadruplexes in the human genome. Nucleic Acids Res. 2005; 33:2908–2916. PubMed PMC

Chambers V.S., Marsico G., Boutell J.M., Di Antonio M., Smith G.P., Balasubramanian S.. High-throughput sequencing of DNA G-quadruplex structures in the human genome. Nat. Biotechnol. 2015; 33:877–881. PubMed

Balasubramanian S., Hurley L.H., Neidle S.. Targeting G-quadruplexes in gene promoters: a novel anticancer strategy. Nat. Rev. Drug Discovery. 2011; 10:261–275. PubMed PMC

Burge S., Parkinson G.N., Hazel P., Todd A.K., Neidle S.. Quadruplex DNA: sequence, topology and structure. Nucleic Acids Res. 2006; 34:5402–5415. PubMed PMC

da Silva M.W. Geometric formalism for DNA quadruplex folding. Chem. Eur. J. 2007; 13:9738–9745. PubMed

Adrian M., Heddi B., Phan A.T.. NMR spectroscopy of G-quadruplexes. Methods. 2012; 57:11–24. PubMed

Karsisiotis A.I., O’Kane C., da Silva M.W.. DNA quadruplex folding formalism - a tutorial on quadruplex topologies. Methods. 2013; 64:28–35. PubMed

Zhang S., Wu Y., Zhang W.. G-quadruplex structures and their interaction diversity with ligands. ChemMedChem. 2014; 9:899–911. PubMed

Phan A.T., Kuryavyi V., Gaw H.Y., Patel D.J.. Small-molecule interaction with a five-guanine-tract G-quadruplex structure from the human MYC promoter. Nat. Chem. Biol. 2005; 1:167–173. PubMed PMC

Chung W.J., Heddi B., Hamon F., Teulade-Fichou M.P., Phan A.T.. Solution structure of a G-quadruplex bound to the bisquinolinium compound Phen-CD(3). Agnew. Chem. Int. Ed. Engl. 2014; 53:999–1002. PubMed

Le D.D., Di Antonio M., Chan L.K.M., Balasubramanian S.. G-quadruplex ligands exhibit differential G-tetrad selectivity. Chem. Commun. 2015; 51:8048–8050. PubMed

Arora A., Maiti S.. Effect of loop orientation on quadruplex-TMPyP4 interaction. J. Phys. Chem. B. 2008; 112:8151–8159. PubMed

Campbell N.H., Parkinson G.N., Reszka A.P., Neidle S.. Structural basis of DNA quadruplex recognition by an acridine drug. J. Am. Chem. Soc. 2008; 130:6722–6724. PubMed

Campbell N.H., Patel M., Tofa A.B., Ghosh R., Parkinson G.N., Neidle S.. Selectivity in ligand recognition of G-quadruplex loops. Biochemistry. 2009; 48:1675–1680. PubMed

Švehlová K., Lawrence M.S., Bednárová L., Curtis E.A.. Altered biochemical specificity of G-quadruplexes with mutated tetrads. Nucleic Acids Res. 2016; 44:10789–10803. PubMed PMC

Kolesnikova S., Srb P., Vrzal L., Lawrence M.S., Veverka V., Curtis E.A.. GTP-dependent formation of multimeric G-quadruplexes. ACS Chem. Biol. 2019; 14:1951–1963. PubMed

Kolesnikova S., Hubálek M., Bednárová L., Cvačka J., Curtis E.A.. Multimerization rules for G-quadruplexes. Nucleic Acids Res. 2017; 45:8684–8696. PubMed PMC

Schanda P., Brutscher B.. Very fast two-dimensional NMR spectroscopy for real-time investigation of dynamic events in proteins on the time scale of seconds. J. Am. Chem. Soc. 2005; 127:8014–8015. PubMed

Phan A.T. Long-range imino proton-13C J-couplings and the through-bond correlation of imino and non-exchangeable protons in unlabeled DNA. J. Biomol. NMR. 2000; 16:175–178. PubMed

Goddard T.D., Kneller D.G.. SPARKY 3. 2008; San Francisco: University of California.

Lee W., Tonelli M., Markley J.L.. NMRFAM-SPARKY: enhanced software for biomolecular NMR spectroscopy. Bioinformatics. 2015; 31:1325–1327. PubMed PMC

Schwieters C.D., Kuszewski J.J., Tjandra N., Clore G.M.. The Xplor-NIH NMR molecular structure determination package. J. Magn. Reson. 2003; 160:66–74. PubMed

Kolesnikova S., Curtis E.A.. Structure and function of multimeric G-quadruplexes. Molecules. 2019; 24:E3074. PubMed PMC

Jolliffe I.T. Principal Component Analysis. 2002; 2nd ednNY: Springer.

Jaumot J., Gargallo R.. Using principal component analysis to find correlations between loop-related and thermodynamic variables for G-quadruplex forming sequences. Biochimie. 2010; 92:1016–1023. PubMed

Nicoludis J.M., Miller S.T., Jeffrey P.D., Barrett S.P., Rablen P.R., Lawton T.J., Yatsunyk L.A.. Optimized end-stacking provides specificity of N-methyl mesoporphyrin IX for human telomeric G-quadruplex DNA. J. Am. Chem. Soc. 2012; 134:20446–20456. PubMed

Trajkovski M., da Silva M.W., Plavec J.. Unique structural features of interconverting monomeric and dimeric G-quadruplexes adopted by a sequence from the intron of the N-myc gene. J. Am. Chem. Soc. 2012; 134:4132–4141. PubMed

Calabrese D.R., Chen X., Leon E.C., Gaikwad S.M., Phyo Z., Hewitt W.M., Alden S., Hilimire T.A., He F., Michalowski A.M.et al. .. Chemical and structural studies provide a mechanistic basis for recognition of the MYC G-quadruplex. Nat. Commun. 2018; 9:4229. PubMed PMC

Šket P., Virgilio A., Esposito V., Galeone A., Plavec J.. Strand directionality affects cation binding and movement within tetramolecular G-quadruplexes. Nucleic Acids Res. 2012; 40:11047–11057. PubMed PMC

Doluca O., Withers J.M., Filichev V.V.. Molecular engineering of guanine-rich sequences: Z-DNA, DNA triplexes, and G-quadruplexes. Chem. Rev. 2013; 113:3044–3083. PubMed

Miannay F.A., Banyasz A., Gustavsson T., Markovitsi D.. Excited states and energy transfer in G-quadruplexes. J. Phys. Chem. C. 2009; 113:11760–11765.

Li X.M., Zheng K.W., Zhang J.Y., Liu H.H., He Y.D., Yuan B.F., Hao Y.H., Tan Z.. Guanine-vacancy-bearing G-quadruplexes responsive to guanine derivatives. Proc. Natl. Acad. Sci. U.S.A. 2015; 112:14581–14586. PubMed PMC

Heddi B., Martín-Pintado N., Serimbetov Z., Kari T.M., Phan A.T.. G-quadruplexes with (4n-1) guanines in the G-tetrad core: formation of a G-triad·water complex and implication for small-molecule binding. Nucleic Acids Res. 2016; 44:910–916. PubMed PMC

Nasiri A.H., Wurm J.P., Immer C., Weickhmann A.K., Wöhnert J.. Anintermolecular G-quadruplex as the basis for GTP recognition in the class V-GTP aptamer. RNA. 2016; 22:1750–1759. PubMed PMC

Winnerdy F.R., Das P., Heddi B., Phan A.T.. Solution structures of a G-quadruplex bound to linear- and cyclic-dinucleotides. J. Am. Chem. Soc. 2019; 141:18038–18047. PubMed

Hazel P., Huppert J., Balasubramanian S., Neidle S.. Loop-length-dependent folding of G-quadruplexes. J. Am. Chem. Soc. 2004; 126:16405–16415. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...